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Preface 

If you need to interpret the results of statistical tests, want to be able to analyze your 
own data, or plan a study without having to consult with a statistician, this text is for 
you. It is written for the researcher who does not want to take a statistics course but 
needs to understand what the statistician does. It is largely nonmathematical except where 
absolutely necessary. It does not assume the reader knows much about statistics except 
what a mean and proportion are. To get the most out of the text, you should have access 
to Microsoft® Office Excel® but you need not be an expert on its use. 

In Chap. 1 you will learn what a P-value is, where it comes from, and how to interpret 
its value. You will also learn about the type of errors that can be made when drawing 
conclusions based on the P-value. You will become familiar with two approaches: test-
ing hypotheses and their advantages and disadvantages. You will learn how to use these 
approaches to interpret a collection of several statistical tests in the same study. 

Chapter 2 explains how samples can be taken from the population in a way that creates 
an unbiased and analyzable dataset. The steps in the sampling process are examined. Then, 
the methods of drawing the sample are explained with their advantages and disadvantages. 

In Chap. 3 you will learn how to choose a statistical test that is appropriate for a given 
set of data. Then, you will learn about the most common statistical tests, how to use Excel 
to perform them, and how to interpret the results by using them. 

Chapter 4 discusses what you can do if you don’t want to wait until a study gets to its 
planned end before you start looking at the data and draw conclusions about what will 
happen if the study is allowed to go to completion. It discusses two approaches, both of 
which can be used to decide to stop a study early if the results look promising. One can 
also stop a study early if the results do not look promising. 

Chapter 5 tells you how to determine the size of a planned sample that allows it to be 
big enough to see important relationships without being bigger than required. Methods are 
given for nominal and continuous variables and for datasets with and without independent 
variables. 

Overland Park, KS, USA Robert Hirsch
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Notices 

The examples in this book are based on fictitious data and should not be taken as a 
reflection of real relationships. Those data have been created only to illustrate statistical 
principles.
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1Logic of Hypothesis Testing 

Abstract 

This chapter begins by describing the hypothesis statistics is designed to test. That 
hypothesis, known as the null hypothesis, states that things do not differ or there is 
no association between measurements. If that hypothesis is rejected, we conclude that 
there are differences or associations. Decisions to reject the null hypothesis are based 
on P-values. The chapter describes the origin and interpretation of P-values. It also 
discusses errors that can occur in interpretation of the P-value and how to control them. 
This discussion addresses the classical or frequentist approach to hypothesis testing. 
The Bayesian approach takes things further, allowing determination of the probability 
that the null hypothesis is false given frequentist methods have resulted in rejection 
of the null hypothesis. Both approaches are applied to the situation in which a study 
includes several hypothesis tests. 

1.1 Classical (Frequentist) Approach 

The classical or frequentist approach to hypothesis is the one used most often and is 
taught in most introductory statistics texts. We will begin by understanding the logic 
behind this approach to statistical hypothesis testing. 

1.1.1 Statistical Hypotheses and Conclusions 

Suppose researchers are comparing a new antiviral treatment to the standard treatment as 
to how well they keep infected persons from hospitalization. Those researchers hypothe-
size that the new treatment is better than the standard treatment and they want a statistical

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 
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2 1 Logic of Hypothesis Testing

analysis of their data to support that hypothesis. The way statistics can do that is by elim-
inating chance as a likely reason for an observed difference between the two treatments.1 

To do that, statistics calculates the probability of observing the observed difference if a 
hypothesis about the difference is true. Unfortunately, this probability cannot be calcu-
lated using the researchers’ hypothesis. To calculate the probability, the hypothesis must 
make a specific statement about the difference between the treatments. The researchers’ 
hypothesis just states that the new treatment is better but does not specify how much 
better. To make a specific statement about the difference between the treatments, statistics 
uses a hypothesis that the researchers believe is not true. That hypothesis is that there is 
no difference between the treatments. That is a specific statement that the difference is 
equal to zero in the population. This statistical hypothesis is still useful to the researchers, 
because if it can be eliminated as a likely explanation for the observed difference, they 
can, through the process of elimination, conclude that there is a difference not due to 
chance.

This hypothesis used by statistics is called the null hypothesis. The null hypothesis is 
a statement that there is no difference or there is no relationship between measurements 
in the population from which the sample was taken. Statistics tests the null hypothesis 
by calculating the probability of getting the observed or a more extreme difference if 
the null hypothesis is true. This probability is called the P-value. If the  P-value is small 
enough, the null hypothesis is rejected. The most used value for the P-value to reject the 
null hypothesis is 0.05 (or 5%). If the chance of getting the observed difference or more 
extreme assuming the null hypothesis is true is 5% or less, we reject the null hypothesis. 
If the chance of getting the observed or more extreme difference is greater than 5%, we 
fail to reject the null hypothesis.2 

If we reject the null hypothesis as an explanation for the observed difference, what do 
we conclude? This is specified by the alternative hypothesis. The alternative hypothesis 
is not tested. Rather, it is embraced as a reflection of truth only through the process 
of eliminating the null hypothesis. Since it is accepted as truth through the process of 
elimination of the null hypothesis, the alternative hypothesis must include all possibilities 
except that stated in the null hypothesis. For the example of the antiviral treatment, the 
most likely alternative hypothesis is that there is a difference between the treatments in 
the population. This is called a two-tailed (or two-sided) alternative hypothesis. A two-
tailed alternative hypothesis would include both the new treatment being better and the 
new treatment being worse than the standard treatment. If it is impossible for the new

1 Another possible explanation for an observed difference is that there is a bias in the design of the 
study. For instance, one group might be sicker than the other group. If both chance and bias can be 
eliminated as likely explanations, the observed difference must be reflecting a causal relationship. 
2 Note that we do not accept the null hypothesis as true if the P-value is greater than 0.05. There is 
no rule of thumb for how large the P-value needs to be to believe the null hypothesis is true in the 
frequentist approach. 
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treatment to be worse than the standard treatment, we can use a one-tailed (or one-
sided) alternative hypothesis.3 Then elimination of the null hypothesis would allow us to 
conclude that the new treatment is better than the standard treatment in the population. 

1.1.2 Errors in Hypothesis Testing 

Since we are relying on probabilities (P-values) in drawing conclusions, something can go 
wrong. For example, we could reject the null hypothesis even though the null hypothesis 
is true. This is called a type I error. The chance of making a type I error is determined 
by our choice for how small the P-value must be to reject the null hypothesis. As stated 
previously, the most common value is 0.05 (5%). This value is called alpha. An alpha of 
0.05 means that we reject the null hypothesis when the P-value is equal to or less than 
0.05. It also means we have a 5% chance of making a type I error. 

Another possible error would be to accept the null hypothesis as true when it is not 
true. This is called a type II error. The chance of making a type II error is called beta. 
Beta is the probability of accepting the null hypothesis as true given that the alternative 
hypothesis is true. Beta cannot be calculated because the alternative hypothesis is not a 
specific statement about the difference or relationship. Since we don’t know the chance 
of making a type II error, we avoid risking making it. We do that by not concluding that 
the null hypothesis is true when we cannot reject it. Instead, we “fail to reject” the null 
hypothesis. This is tantamount to not drawing a conclusion from the results of hypothesis 
testing when we cannot reject the null hypothesis. 

The complement of beta (1-beta) is called the statistical power. Statistical power is 
the probability of rejecting a false null hypothesis. It is calculated when planning a study. 
To calculate it, statisticians need to specify a specific value for the alternative hypothesis. 
Then, the calculated statistical power is relevant only when the specified value of the dif-
ference (or relationship) is true. Statisticians usually use a difference that is the threshold 
of interest. For example, suppose the researchers think that the new treatment would be 
worthwhile only if it is as least 2% better than the standard treatment. Then, statisticians 
would use a difference of 2% to calculate the statistical power when planning the study. 
This is discussed further in Chap. 5. 

1.1.3 Calculating P-Values 

To calculate a P-value we need to think about the distribution of all possible values for 
whatever we are estimating. For example, if we are interested in differences in the chance

3 Note that to use a one-tailed alternative hypothesis, deviations from the null hypothesis must be 
possible in only one direction. It is not enough to say we do not think that deviations in both 
directions will occur or to say we are only interested in deviations in one direction. 
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Fig. 1.1 The sampling 
distribution for the difference 
in the chance of hospitalization 
under the null hypothesis that 
that difference is equal to zero 
in the population 

of hospitalization between the new treatment and the standard treatment, we need to think 
about the distribution of all possible differences. This distribution tells us how frequently 
each value of the difference would occur if we were to run the experiment many, many 
times on different samples of patients. This is called the sampling distribution.4 

To calculate a P-value, we must assume that the null hypothesis is true. This is reflected 
in the sampling distribution by the null value being the most frequent value in the dis-
tribution. This sampling distribution is called the null distribution. Figure 1.1 shows the 
null distribution for the study of a new antiviral treatment. 

On that null distribution, the observed difference, and its negative value (for a 
two-tailed alternative hypothesis) are considered. This defines the “tails” of the null 
distribution. Suppose the researchers observe a difference of 5% in the chance of 
hospitalization. This null distribution is illustrated in Fig. 1.2. 

The P-value is the proportion of the null distribution in the tails. This is illustrated in 
Fig. 1.3. 

1.1.4 Interpreting P-Values 

To interpret a P-value it is compared to alpha, the selected probability of making a type 
I error. As previously stated, the most common value of alpha is 0.05. If the P-value 
is less than or equal to alpha, we reject the null hypothesis and, through the process of 
elimination, accept the alternative hypothesis. In this case, we say the result is statistically 
significant.

4 I have drawn the sampling distribution as a bell-shaped curve. Sampling distributions tend to be 
bell-shaped regardless of the shape of the distribution of data, if the sample is large enough. This 
important principle is called the central limit theorem. 
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Fig. 1.2 The tails of the null 
distribution for a two-tailed 
alternative hypothesis if the 
researchers observe a 
difference of 5% in the chance 
of hospitalization 

Fig. 1.3 The P-value as the 
proportion of the null 
distribution in the tails of that 
distribution 

What about the numeric magnitude of the P-value? What does a P-value of 0.01 tell 
us? Other than rejecting the null hypothesis, it just tells us that the sample we got would 
happen 1% of the time if the null hypothesis were true. It does not tell us the chance that 
the null hypothesis is true. Instead, the P-value assumes that the null hypothesis is true. 
It has no relevance if the null hypothesis is false. 

1.2 Bayesian Approach 

The approach described in the previous chapter is the classical approach to hypothesis 
testing. It is often called the frequentist approach. Another approach is the Bayesian 
approach. An advantage of the Bayesian approach is that it can allow us to calculate 
the probability that the null hypothesis is true given our observations.
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1.2.1 Bayes’ Theorem 

The Bayesian approach is based on Bayes’ Theorem. To understand Bayes’ theorem, we 
need to understand some things about the probabilities related to hypothesis testing. 

Most of the probabilities related to hypothesis testing are conditional probabilities. A  
conditional probability is the probability of one thing occurring under the condition that 
another thing occurs. The thing that the probability addresses is called the conditional 
event and thing assumed to occur is the conditioning event. For a P-value, the conditional 
event is getting the estimate we got in our sample or more extreme and the condition-
ing event is that the null hypothesis is true. In shorthand, we can write a conditional 
probability as follows: 

p(conditional event|conditioning event) (1.1)

The P-value is the probability of getting the observed difference or more extreme given 
that the null hypothesis is true. In shorthand, the P-value is: 

P-value = p(observed results|null hypothesis is true) (1.2)

A problem with the P-value is that it is a backwards probability. By that I mean that 
the conditional and conditioning events are the reverse of what we would like to have 
to interpret the results of a hypothesis test. What we would like to have is a conditional 
probability called the posterior probability.5 The posterior probability tells us the prob-
ability that the null hypothesis is true given the observed estimate or more extreme. In 
shorthand, we can write the posterior probability as follows: 

Posterior = p(null hypothesis is true|observed results) (1.3)

In the Bayesian approach to hypothesis testing, there is a third probability we need 
to consider. That is the prior probability. The prior probability is the probability that the 
null hypothesis is true before we know that results of the statistical analysis.6 It is not a 
conditional probability. In shorthand, the prior probability is: 

Prior = p(null hypothesis is true) (1.4)

Finally, in the Bayesian approach, we need to consider the statistical power. Statistical 
power is the probability of getting the observed estimate or more extreme given that the 
null hypothesis is false.7 In shorthand, statistical power is:

5 We call this the posterior probability because it is the probability of the null hypothesis being true 
after we know the results of the statistical analysis. 
6 This is often a difficult probability to which to assign a value. There is no analysis that helps. 
Rather, the research must assign a value based on a subjective guess. 
7 We will learn more about statistical power in Chap. 5. 
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Power = (observed results|null hypothesis is false) (1.5)

The way in which we can interchange the conditional and conditioning events in a 
conditional probability is by using Bayes’ theorem. In terms of the P-value, we can use 
Bayes’ theorem to get the probability that the null hypothesis is true given the observed 
difference or more extreme. That calculation is as follows: 

Posterior = P-value · Prior 
[P-value · Prior] + [Power · (1 − Prior)] (1.6)

Now, let us look at example of using Bayes’ Theorem to interpret the results of a 
statistical hypothesis test. 

Example 1.1 The researchers who compared a new antiviral medication to the standard 
treatment sent their data to a statistician for analysis. In the statistician’s report, she says 
the difference in chance of hospitalization is 5% and, testing the null hypothesis that the 
difference is equal to zero in the population, the P-value is 0.02. Further, the statistician says 
that the study has a power of 0.80 to detect a difference of 5%. Interpret these results. 

Using the frequentist approach, the researchers observe that the P-value is less than 
0.05, thus they reject the null hypothesis and, through the process of elimination, accept the 
alternative hypothesis that the difference is not equal to zero. This is the limit of what they 
can do using the frequentist approach. 

To get more information about the null hypothesis, the researchers decide to use the 
Bayesian approach. In preparation, they consider what they thought was the chance that 
the null hypothesis was true before the study was done. Since animal studies were very 
promising, they believed there was a very good chance of rejecting the null hypothesis 
before they did their study on patients. Thus, they believe there was a low chance that the 
null hypothesis is true. They pick a probability of 0.1 to represent that low probability. 

Now, the researchers use Eq. 1.6 to calculate the posterior probability that the null 
hypothesis is true given that the null hypothesis has been rejected. 

Posterior = 0.02 · 0.1 
[0.02 · 0.1] + [0.80 · 0.9] = 0.00277 

So, the probability that the null hypothesis is true given the observe difference is about 
0.003. Or that can be expressed as the probability that the null hypothesis is false (1– 
0.00277 = 0.99723). That implies the researchers can be more than 99% confident that 
the difference in chance of hospitalization is not the same for the two treatments given the 
observed difference of 5%. 

Because determination of the prior probability is a guess, other values can be considered 
to see how this affects the conclusion. This is illustrated in the next example.
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Example 1.2 In Example 1.1, the researchers choose a prior probability of 0.1 to represent 
the belief that the null hypothesis that there is no difference between the treatments was 
unlikely to be true. To evaluate the effect of that guess on the conclusions, they tried other 
values for the prior probability. 

The following table summarizes the results of considering other values for the prior 
probability. 

Prior Posterior 

0.05 0.001314 

0.10 0.002770 

0.20 0.006211 

0.30 0.010601 

0.40 0.016393 

All those posterior probabilities are small, so it does not matter what value they choose to 
represent their belief that the null hypothesis is unlikely to be true. The conclusion remains 
the same. 

1.2.2 Multiple Hypotheses 

Sometimes a study includes several hypothesis tests. One type of study in which this 
occurs is a study that is searching for risk factors for a disease. Generally, several risk 
factors are investigated. Each risk factor receives its own hypothesis test testing the null 
hypothesis that there is no difference in the risk of disease for people with the risk factor 
compared to people without the risk factor. In this circumstance a study can contain 
several hypothesis tests each with its own P-value. 

A problem with this type of study is that there can be a high probability that at least 
one hypothesis test is statistically significant even though its corresponding risk factor is 
not really a characteristic that is associated with the disease. In other words, there can be 
a high probability of at least one type I error. This is known as the multiple comparison 
problem. 

The chance of at least one type I error in a collection of hypothesis tests make up 
its experiment-wise type I error rate. In contrast, the chance of a type I error from a 
single hypothesis test is the test-wise type I error rate. The test-wise type I error rate is 
determined by our choice of alpha, the value we use to determine whether we reject the 
null hypothesis. The usual value of the test-wise alpha is 0.05.
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The experiment-wise alpha can be substantially greater than the test-wise alpha. For 
instance, if we perform five hypothesis tests with a test-wise alpha of 0.05, the experiment-
wise alpha is 0.2262. Most studies of this type have more than five risk factors considered. 
Twenty is not unusual. With twenty risk factors, the experiment-wise alpha is 0.6415. 
Many believe that this is a concern, and something should be done to control the 
experiment-wise type I error rate. 

The frequentist approach to this problem is simple. That solution is to use a smaller 
value of test-wise alpha so that the experiment-wise alpha is 0.05. A way to do that is to 
divide 0.05 by the number of tests. This is known as the Bonferroni correction. So, for ten 
tests, the value of alpha to use to interpret each test is 0.005. Then, the experiment-wise 
alpha is 0.04889, very close to 0.05. It works! 

There is a serious drawback to this method. That is adjusting the test-wise alpha to 
a smaller value increases the chance of failing to reject a false null hypothesis. In other 
words, this approach decreases the statistical power. This can cause us to miss detecting 
real relationships that we would have seen if we had not used a smaller test-wise alpha. 

The Bayesian approach to this problem does not reduce statistical power. In this 
approach, we assign prior probabilities to each of the hypothesis tests. In the example 
of a study examining risk factors for a disease, this means we distinguish among the risk 
factors, identifying those that have a high biologic likelihood of being true predictors of 
the disease distinguishing them from the risk factors that have a low biologic likelihood 
of being true predictors of the disease. Then smaller P-values will be required to obtain 
an acceptable posterior probability for those low likelihood risk factors than the P-values 
required to obtain an acceptable posterior probability for the high likelihood risk factors. 

Example 1.3 Suppose we are interested in risk factors for pancreatic cancer. We perform a 
study in which we evaluate 30 characteristics and obtain 5 statistically significant (i.e., with 
P-values less than or equal to 0.05) results. These are listed in the following table. 

Risk factor P-value 

Family history 0.015 

Smoking 0.001 

High alcohol consumption 0.019 

High coffee consumption 0.027 

Obesity 0.011 

Let us interpret these results. 

First let us use the frequentist approach. To interpret these P-values, we compare them 
to the adjusted value of alpha. We get that adjusted value of alpha by dividing 0.05 by the 
number of tests (30). The adjusted alpha is 0.00167. When we use that adjusted alpha, only
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one characteristic (smoking) is statistically significant. We fail to reject the null hypothesis 
for the other characteristics. 

Now, let us use the Bayesian approach. Before we did the study, we thought family 
history, smoking, high alcohol consumption, and obesity were likely to be real risk factors. 
Let us say a value of 80% represents the likelihood that we would be able to reject the null 
hypothesis for these characteristics. High coffee consumption, however, was not expected 
to be a real risk factor. Let us say that 30% represents the likelihood that we would be able to 
reject the null hypothesis for high coffee consumption. When planning the study, the sample 
size was selected to give us 90% power to detect a clinically relevant difference. 

With that information, we can use Eq. 1.6 to calculate posterior probabilities that the null 
hypothesis of no difference in risk is true. The following table summarizes those calculations. 

Risk factor P-value Prior Posterior 

Family history 0.015 0.2 0.0042 

Smoking 0.001 0.2 0.0003 

High alcohol consumption 0.019 0.2 0.0053 

High coffee consumption 0.027 0.7 0.0654 

Obesity 0.011 0.2 0.0030 

Using a value of 0.05 or less for the posterior probability to consider the result to be 
statistically significant, all except high coffee consumption have a small enough posterior 
probability for us to believe that the null hypothesis is not true. In other words, we conclude 
that they are true risk factors. The evidence is just not strong enough to overcome the high 
prior probability that the null hypothesis is true for high coffee consumption.
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Abstract 

Hypothesis testing involves examination of a sample to say something about the pop-
ulation from which the sample was drawn. An assumption of hypothesis testing is that 
the sample is representative of the population, at least on the average. This chapter 
describes the sampling process going from elements in the population to observational 
units in the sample. There are several methods for selecting the sample. The best of 
these is probability sampling that leads to different kinds of random samples. Sam-
pling is usually a multistage process and can involve different sampling methods at 
each stage. 

In statistical hypothesis testing, we examine the sample to draw conclusions about the 
population. Our ability to do that depends on how the sample was taken. Regardless 
of how sophisticated the method of analyzing data in the sample an improperly taken 
sample will preclude accurate conclusions about the population. Thus, it is important that 
we understand the basic issues in sampling. The universal assumption of all statistical 
procedures is that the sample be representative of the population for which we wish to 
test hypotheses. In this chapter, we will learn that there are several ways in which we can 
satisfy this requirement. 
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2.1 Taking Samples 

The need for statistics in research stems from the fact that we examine samples so that 
we can draw inferences about populations from which the samples were drawn. From a 
statistical point of view, our interest in applying inferences is limited to the population 
from which the sample was drawn. That population is called the sampled population.1 

Each time we attempt to apply the results of analysis of a sample to the sampled popu-
lation, we assume that the sample has been drawn in such a way that it is representative 
of the values in that population, at least on the average. This assumption, therefore, is 
universally part of every statistical procedure. 

Before we discuss the various ways in which a sample can be taken so that it is rep-
resentative of the population, however, we need to become familiar with the terminology 
that is used in sampling theory. The smallest units that are of interest in sampling from a 
population are the elements in the population. The elements are the units for which infor-
mation is sought for estimation or inference. In research, persons are the most common 
elements, but other elements might be animals, assays, cultures, etc. The way to iden-
tify the elements is to ask yourself, “For what units in the population do I want to draw 
inferences?”. 

The units that might be selected to be in a sample are called the sampling units. Anal-
ysis is easiest when each sampling unit contains one element, but this is not always the 
case. For example, suppose we were interested in estimating serum cholesterol levels 
among adults in a certain community. The elements are adults in this community. If we 
were to draw our sample by selecting individuals from this population, the sampling units 
would also be adults in the community. It might be easier, however, for us to draw a 
sample of households in the community and to measure the serum cholesterol levels for 
all the adults in a selected household. If we were to sample the population in this way 
many of the sampling units (households) would contain more than one element (adults). 

When sampling units contain one element, we are doing elemental sampling. When 
sampling units contain more than one element, we are doing cluster sampling. Most 
statistical procedures assume that we have an elemental sample. 

Sometimes a sampling unit consists of multiple measurements of the data of interest for 
each element at a particular point in time. For example, in measuring serum cholesterol 
levels we might make determinations in triplicate and then use the mean of the three 
determinations as the serum cholesterol level for an individual. The reasoning behind 
this strategy is that each determination is made with a certain degree of imprecision and 
the imprecision is reduced by repeating the determination and taking the mean of the

1 We are often interested in applying inferences to populations that are like, but not the same as, the 
sampled population. This process of applying estimates or inferences to populations other than the 
one from which the sample was drawn is called extrapolation. The populations to which we extrap-
olate inferences is called the target population. The appropriateness of extrapolation depends on the 
similarity of the sampled and target populations. 
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determinations.2 In fact, what we have done is to obtain a sample from a population in 
which the sampling units contain more than one element. 

When the sampling units contain more than one element, either of two approaches 
might be taken. One approach is to use a method of analysis that takes this into account. 
The other approach is to allow the sampling units to redefine the elements and, as a result, 
redefine the question being addressed. In other words, we recognize that inference using 
the usual methods of analysis will address households instead of individual adults or the 
mean of three serum cholesterol determinations instead of a single determination. This 
is the easier approach and should be considered if the sampling units define groups of 
elements that are relevant to the researcher. 

After we have specified the elements and the sampling units, we are just about ready 
to obtain our sample (i.e., to identify which of the sampling units in the population will 
be included in the sample). To satisfy the universal assumption of statistics (that the 
sample be representative of the population) each sampling unit in the population must 
have a known nonzero probability of being included in the sample. To ensure that each 
sampling unit has a chance of inclusion in the sample, we need to identify and list all 
the sampling units in the population. The list from which the sample will be taken is 
called the sampling frame and the units that appear on the list are called listing units. 
Ideally, the listing units and the sampling units should be identical. In other words, each 
sampling unit should be represented in the sampling frame by one and only one listing 
unit. Failure of the sampling frame to include all the sampling units is likely to lead to a 
biased3 sample about which statistical analysis can do little or nothing. 

The next step in the process of sampling entails selecting a subset (ie, a sample) of the 
listing units and making observations or measurements on this subset. How this subset 
might be selected will be discussed in a moment, but all those methods assume that 
each listing unit that is selected will be observed or measured. Those that are observed 
or measured are called the observational units. Ideally the observational units are the 
same as the listing units that are selected to be in the sample. There are many common 
reasons that this might not be the case. For example, information might be lost, or an 
individual might refuse to participate in the study. Regardless of the reason, failure to 
make observations or measurements on all the listing units selected to be in the sample 
is likely to lead to a biased sample.4 

Figure 2.1 summarizes the relationships among the various types of units.

2 Other strategies for combining the information from repeated determinations also are used. For 
example, with three determinations, the highest and lowest values could be discarded. The same 
issues apply to these other strategies as to the mean of the determinations. 
3 Bias is a directional deviation from the truth. Imprecision, in contrast, is a nondirectional deviation 
from the truth, at least on the average. 
4 The only way that a biased sample can be avoided in this situation is if the listing units that are 
selected to be included in the sample but do not become observational units are identical, on the 
average, to the listing units that do become observational units. 
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Fig. 2.1 The relationships among the units involved in taking a sample from a population. The ele-
ments are the units in the population for which estimation or inference is planned. Those elements 
are organized as sampling units each of which should appear as a listing unit on the sampling frame. 
Those listing units selected to be in the sample and contribute all data to the sample are called the 
observational units 

Now that we understand some of the basic principles and terminology of sampling, we 
are ready to think about the specific mechanisms that can be used to draw a sample. 

2.2 Model Sampling 

In the process called model sampling, particular listing units are selected to become obser-
vational units by a researcher because that researcher believes that those listing units are 
representative of the sampling units in the population. One form of model sampling is 
judgment sampling, in which an expert (or group of experts) is asked to select the obser-
vational units. For example, suppose we wanted a sample of cities in the United States. 
To take a judgment sample, we would select cities we believed to be representative of all 
cities. Judgment sampling is the method that is most often used to select study sites. It is 
rarely used to select individuals to be included in a sample. 

One type of model sampling that might be used to select individuals in a study is called 
quota sampling. In quota sampling, data collectors are instructed to make observations or 
measurements on a given number of representative units. It is this method of sampling 
that is used when interviewing the “man on the street.” 

To conduct model sampling, it is necessary to be able to recognize listing units that 
are representative of the sampling units in the population. This is a very difficult, if not 
impossible, task. For example, to choose a representative sample of cities, we might have 
to consider many, many different characteristics of cities and to differentiate between 
those characteristics that are of importance in each study. Seldom are we so familiar with 
the sampling units that we can make judgments about representativeness of listing units. 
More often, imperfect knowledge results in choices that create biased samples. Further, 
it is difficult to discern what is meant by a representative sample (e.g., how would you
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choose five cards that are representative of a deck of 52 cards?). The only time that model 
sampling is an advisable approach is when other methods are not practical. 

2.3 Probability Sampling 

An alternative to model sampling is an approach called probability sampling. The basic 
philosophy behind probability sampling is that chance, rather than knowledge, is used 
to select a representative sample. This reliance on chance circumvents the problem we 
encountered in model sampling of making incorrect choices because of imperfect knowl-
edge or an inability to specify the meaning of a representative sample. When chance 
is used to select those listing units that will be observational units, then, on the aver-
age, the samples will contain observational units that are representative of the sampling 
units in the population.5 Any particular sample, however, might be, by chance, distinctly 
unrepresentative of the population. This is the reason we use the statistical procedure of 
hypothesis testing to take the role of chance into account. This procedure helps us to 
address the probability of obtaining an unrepresentative sample when chance is used to 
select observational units. 

In probability sampling, each listing unit has a known, greater-than-zero probability of 
becoming an observational unit. If each listing unit has the same probability of becoming 
an observational unit, we are using simple random sampling. It is necessary to use this 
method if we desire a sample in which the distribution of independent variable6 values 
representative of the corresponding distribution in the population. In the next chapter, we 
will see that such a sample is needed for correlation analysis. 

The most usual method for simple random sampling involves assigning a random num-
ber to each of the listing units. A random number is a number from a series of numbers 
that has been constructed without any apparent order. There are several sources of such 
random numbers. Many (older) statistical texts contain tables of random numbers. Today, 
a more convenient source of random numbers is the computer or pocket calculator. When 
random numbers are obtained from a computer or a pocket calculator, they are usually 
numbers between zero and one with each possible numeric value within that range having 
the same probability of occurring. 

To decide which of the listing units will be selected as observational units, we first 
need to specify the proportion of the listing units we wish to include in the sample. This 
proportion is then used as the upper limit of the range of random numbers with possible 
values from zero to one that indicate a listing unit that will be selected as an observational

5 This assumes all sampling units in the population occur as listing units in the sampling frame or 
that the listing units are, themselves, representative of the sampling units in the population. 
6 In statistical analysis, there are two types of variables. Independent variables represent the predictor 
data. Dependent variables represent the predicted (outcome) data. Types of variables are described 
further in Chap. 3. 
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Fig. 2.2 Schematic of the process of taking a stratified sample. In stratified sampling, listing units 
are separated into strata within each of which chance determines which of the listing units become 
observational units. Here, strata are defined by gender. The probability that a listing unit will become 
an observational unit can be different in different strata 

unit.7 For example, if we want to select 1% of the listing units, those listing units with 
random numbers between zero and 0.01 should be included among the observational units. 

Simple random sampling is the most straightforward of the probability sampling meth-
ods. Samples selected with this method are the most straightforward to analyze. Often, 
however, there is good reason to use a more complicated probability sampling method. 
One way that the sampling method can be more complicated is by using different proba-
bilities of becoming an observational unit for different groups of listing units. This method 
of sampling is called stratified random sampling. 

In stratified sampling, the listing units are separated into groups (strata) specified by 
values of one or more characteristics. Within each of these strata, a random sample is 
taken so that a specific proportion of the listing units in a stratum become observational 
units. The proportions of listing units selected can be different for different strata. Thus, 
listing units in some strata can have a greater probability of being included in the sample 
than do listing units in other strata (Fig. 2.2). 

Stratified sampling is used to ensure that groups of sampling units that might occur 
infrequently in the population are represented by a sufficient number of observational 
units in the sample to allow hypothesis testing with reasonable statistical power.8 One 
type of study that always uses stratified sampling is a case-control study. In this type of

7 This implies that each listing unit can be selected only once. In statistical terminology, we call this 
sampling without replacement. Nearly every sample in most research is taken without replacement. 
8 Recall from Chap. 1 that statistical power refers to the probability of avoiding a type II error in 
statistical inference. A type II error is accepting the null hypothesis when, in fact, it is false, 
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study, listing units are separated into two groups: cases (with the disease under study) 
and controls (without the disease under study). Then separate random selection processes 
for cases and controls are used to determine which listing units will become observa-
tional units. These selection processes are distinguished by a higher probability of any 
particular case becoming an observational unit than any particular control becoming an 
observational unit. Since case-control studies are performed only when cases are consid-
erably less common than are controls, this stratified method of sampling is necessary to 
include a reasonable number of cases in the sample without requiring a very large total 
number of observational units. 

Case-control studies are not the only type of study that use stratified sampling. In 
fact, whenever a researcher specifies the proportion of observational units in the sample 
that will have any characteristic, that researcher is using stratified sampling. Stratified 
sampling might be used to specify the number of individuals in a sample of various races, 
age groups, genders, etc. When the researcher selects the distribution of a characteristic 
of observational units in the sample, that researcher is using stratified sampling. 

Intervention studies (such as a laboratory experiment or a randomized clinical trial) are 
an interesting special application of stratified sampling. Often, the participants in an inter-
vention study are selected to be in the study with equal probability from listing units.9 

Thus, it might seem as if simple random sampling were used. The various interventions 
(such as treatments or doses), however, are assigned to the observational units in frequen-
cies determined by the researcher. For example, half the participants might receive a new 
treatment and half might receive the standard treatment.10 Even though assignment of the 
intervention occurs after observational units have been selected, the type of intervention 
an individual receives is thought of as a characteristic of the sampling units in the popula-
tion. Since the researcher determines the proportion of the observational units that receive 
each intervention, the effect is the same as stratified sampling. 

For a given sample’s size, statistical power is greatest when there is the same number 
of observational units in each of the groups being compared.11 An advantage of stratified 
sampling is that we can maximize statistical power by selecting the same number of 
observational units from each stratum. A disadvantage of using stratified sampling is that 
statistical analysis becomes a little bit more complex. For one thing, we must be certain 
to include in our analyses variables that represent the characteristics that were used to 
construct strata.

9 The most frequently used method of obtaining participants in a randomized trial is taking all per-
sons who qualify for entry into the study over a specified period of time. I will discuss this method of 
sampling a little later. Then, we will see that it is assumed that this method of sampling is the same 
as probability sampling. 
10 The assignment of treatments or doses is most often done using a process called randomization 
(thus, the term randomized clinical trial). This should not be confused with random sampling, a 
process of selecting persons to include in the sample. 
11 This will be proven in Chap. 5. 
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Fig. 2.3 Schematic of a cluster sample in which sampling units (and, therefore, listing units) consist 
of more than one element 

Earlier in this chapter I suggested that sampling units in the population can sometimes 
contain more than one element. For example, we might be interested in estimating the 
mean length of stay of hip fracture patients in the United States. Thus, the elements are 
persons admitted for hip fracture to any hospital anywhere in the United States. It would 
be very difficult for us to make a list of all of those patients even if we were willing to 
consider a very limited period of time. The way that we might approach this problem 
would be to obtain a list of hospitals rather than a list of patients and randomly select the 
hospitals for which we could examine the records of all hip fracture patients. We learned 
earlier that this strategy of sampling collections of elements rather than the elements 
themselves is known as cluster sampling (Fig. 2.3). 

It is not unusual for research to rely on cluster sampling, but the use of this sampling 
method violates an assumption of commonly employed methods of statistical analysis. 
That assumption is that the observational units in a sample are statistically independent 
of one another. That is to say, these methods assume that data values for one individual in 
the sample are not influenced by the data values of other individuals. This is likely to be 
untrue when we sample clusters. For example, if we were to sample hospitals rather than 
individuals to estimate length of stay for hip fracture patients, we could expect to observe 
less variation among patients discharged from a given hospital than we would observe if 
we compared patients discharged from different hospitals. Thus, observation of length of 
stay for patients in any particular hospital are not statistically independent of one another. 

The effect of violation of the assumption of independence among observational units 
is that a sample contains less information about the population than the sample’s size 
suggests. This is because observational units that are not statistically independent produce 
data that are, to some degree, redundant. There are special statistical techniques that allow 
this redundancy to be taken into account, but most of these procedures are very complex. 
I will not describe these complex procedures in this text.



2.4 Other Methods of Sampling 19

2.4 Other Methods of Sampling 

When confronted with the task of sampling a certain proportion of a population, it is often 
tempting to use some regular pattern to identify those individuals who will be included 
in the sample. For example, if we wished to sample one-tenth of the patients seen at a 
particular clinic, we might decide to select every tenth patient in the order in which they 
present or to select all patients seen every other Tuesday for example. Sampling by using 
such a pattern is known as systematic sampling. 

Systematic sampling is used in place of random sampling because it is easier to exe-
cute. It is, however, a dangerous method to select observational units. The danger is that 
listing units that fit into the pattern used to select observational units might be different 
than the listing units that do not fit into the pattern. For example, suppose different mem-
bers of a family tend to be seen sequentially at the clinic from which we would like to 
draw a sample. If we selected every tenth listing unit from a sampling frame that listed 
patients in the order in which they were seem, there would be a very low probability 
of two members of the same family both becoming observational units. If what we are 
studying is in any way influenced by being in the same family, our sample would contain 
observational units that lack this influence. Thus, the sample would be biased. 

Systematic sampling can be avoided. Even though taking a random sample is more 
complicated to perform than taking a systematic sample, the probability that there exists 
some unrecognized association between the pattern used to take a systematic sample and 
the relationships we are studying is too great to make the easier method advisable. For us 
to say that such an association does not exist is tantamount to taking a judgment sample. 
Rarely, if ever, do we understand relationships we are studying well enough to make this 
kind of judgment. 

Another type of sampling is called convenience sampling. In this method of sampling, 
certain listing units are selected to become observational units because they are more 
easily included in the sample than are other listing units. This is the usual way that 
patients are recruited to participate in randomized clinical trials. In that case, all patients 
seen during a specific period of time at clinics participating in the study who meet the 
entrance criteria are asked to be in the study.12 

Clearly, there is a potential for convenience sampling to result in a biased sample, 
and it seems to be a method that we should avoid. Unfortunately, nearly every sample 
that we take is, to some degree, a convenience sample. This is especially true when we 
think of time as one of the characteristics that is associated with the sampling units in 
the population. Generally, we would like to think of the results of our research to be 
applicable to individuals that exist in the population over an extensive period of time. In 
taking a sample, however, we are restricted to selection of sampling units as they exist

12 Convenience sampling is the method used in randomized clinical trials that recruit newly diag-
nosed cases for whom a treatment is being investigated because of the virtual impossibility of 
constructing a sampling frame. 
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in the period of time that we can observe. Thus, we are taking a convenience sample of 
time. Since we cannot completely avoid taking convenience samples of some aspects of 
the sampling units in the population, we need to recognize how we are using this method 
of sampling and the danger it presents by resulting in a biased sample. 

So far, we have seen several choices we can make among methods of obtaining a sam-
ple from a population. One choice we have is between model sampling (in which we use 
knowledge to select representative listing units) and probability sampling (in which we 
use chance to select representative listing units). Whenever practical, I recommend using 
probability sampling since statistical methods are designed to take this role of chance into 
account. Another choice is between elemental sampling (in which each sampling unit con-
sists of only one element) and cluster sampling (in which sampling units consist of more 
than one element). I recommend using elemental sampling since the statistical procedures 
with which are familiar assume statistical independence among observational units. In 
addition to those choices, we can use systematic sampling (in which a specific pattern is 
used to select observational units) or convenience sampling (in which observational units 
are selected because they are more easily included in the sample). I recommend avoid-
ing systematic sampling, but I recognize that it is often impossible to completely avoid 
convenience sampling. 

Usually, the process that is used to select a sample consists of several of the meth-
ods we have described. For example, suppose we wished to estimate the prevalence of 
influenza among grade school students in a particular state and to make those estimates 
for students belonging to four different racial groups. First, we might select several school 
districts that we believe represent all the school districts in the state (judgment sampling). 
Then, we might randomly select several schools within each district (cluster sampling). 
Within each location, we might take a sample of students in each school in such a way 
that the four racial groups are represented by the same number of observational units in 
the sample (stratified sampling). 

Such a process of sampling that involves more than one step is known as multistage 
sampling. Multistage sampling can make the process of drawing a sample easier than if 
sampling were to involve only one step. In the previous example, it would have been very 
difficult to take a stratified sample from a list of all students in the state. When multistage 
sampling is used, however, the method of statistical analysis must be designed to reflect 
the various sampling stages. 

Now, let us look at an example to see how these various methods of sampling are 
combined in an actual research study. 

Example 2.1 The following is a description of how the sample in the Framingham Heart 
Study was obtained. 

In 1947, the Public Health Service (PHS) began to plan for an epidemiologic study of 
cardiovascular disease (CVD) with specific emphasis on arteriosclerotic and hypertensive 
cardiovascular disease. The plan was to obtain a sample of persons: (1) 30–59 years of age
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(to target those persons likely to develop CVD within a reasonable period of time), (2) free 
of overt CVD, and (3) from one geographic area (for reasons of cost). The maximum period 
of follow-up planned was 20 years. 

Sample size estimates, based on incidence of CVD expected from previous surveys, 
suggested that 6,000 persons would need to be recruited for the planned study to allow 
observation of a sufficient number of cases of CVD within a 20-year period. Based on the 
age structure of the US population in 1947, it was predicted that a community of at least 
25,000 would be required to yield 6.000 persons between 30 and 59 years of age. It was 
decided to set an upper limit of 50,000 on the community to be sampled to ensure that a 
community would be selected that would be small enough to maximize cooperation with 
the planned study. 

In the middle of 1947, the Massachusetts State Health Commissioner asked the PHS to 
consider a number of Massachusetts communities as the site for the planned study. Among 
those considered, Framingham was chosen. Being 21 miles west of Boston, it was expected 
that Framingham offered access to epidemiologic and medical resources of Boston without 
losing its identity as a separate, stable community. In 1947, Framingham was an industrial and 
trade center with a population of 28,000. It had a town-meeting form of government which 
meant that the residents were used to working as a community on various projects. Further, 
Framingham was a successful site for the 1917–1923 community study of tuberculosis. 

In October of 1947, the Heart Disease Epidemiology Study (HDES) began in Framingham 
to develop case-finding procedures for heart disease. In September of 1948 examinations 
were begun on volunteers. By July 1949, more than 1,500 volunteers had been examined 
and study facilities and staff had been established in Framingham. At this time, the HDES 
was transferred from the PHS Heart Disease Demonstration Section to the National Heart 
Institute (NHI). 

In December 1949, NHI established a new sampling scheme (actually, reestablishing 
the original sampling objective). The 1950 town list (a publication based on an annual 
local census of persons 20 or more years of age) was stratified by family size and precinct of 
residence and arranged in order by address. Since there were approximately 10,000 residents 
of Framingham 30–59 years old in 1950, it was decided to take a two-thirds sample of 
households, recruiting all members of the household 30–59 years old. This sample was 
taken by selecting the first two households and skipping the third household according to 
street addresses. 

The two-thirds sample of households identified 6,507 persons 30–59 years of age who 
were invited to participate in the study. Of those, 4,494 (68.8%) agreed. At the first exam-
ination, it was discovered that 25 persons were not 30–59 years old, leaving a sample of 
4,469. Because of the poor response to the first examination, it was decided to invite persons 
who had been volunteers for the PHS case-finding study (HDES) to participate in the NHI 
study. Of those volunteers, 740 were found to be eligible for entry into the study and agreed 
to participate. Thus, the original sample for the Framingham Heart Study was increased to 
5,209 persons.
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From this description, let us identify the elements, sampling units, sampling frame, listing 
units, observational units, and the method(s) of sampling used in the Framingham Heart 
Study. 

To evaluate the sampling methods used in a study, we first need to determine what are 
the intended elements in the population to be sampled. In the Framingham Heart Study, the 
interest was to investigate factors associated with the development of cardiovascular disease. 
Thus, persons are the elements of interest. 

This is a multistage sample. There are two main stages to the sampling process. The 
first stage involves selection of the site at which the study would be performed. This was 
done mostly as a convenience sample (various factors made a study in Framingham easier 
to perform). Although we are not told explicitly, we can suspect that the site was selected 
partly as a result of expert opinion that Framingham was, in some ways, a representative 
community (although it was distinctly unrepresentative as far as race is concerned). That is 
to say, the selection of Framingham probably reflects a degree of judgment sampling. 

The second main stage of sampling involves selection of subjects from the Framingham 
community. The sampling frame was the 1950 town list. The listing units were households 
appearing in the town list. To prepare these for sampling (i.e., to establish the sampling 
units), these households were stratified by family size and precinct of residence and ordered 
by address. Then, two out of every three entries were selected. From this description, we 
can see that part of the sampling strategy involved cluster sampling. We know that this is the 
case since each listing unit (household) was the source of one or more elements (persons). 
Further, we see that stratified sampling was used. This is not as obvious since the proportion 
of households within each of the strata (defined by family size and precinct of residence) was 
the same as their proportion in the population. Even so, the sampling scheme guaranteed that 
this would be the case. That is different from simple random sampling in which chance would 
have determined the proportion from each stratum that actually occurred in the sample. 

The mechanism of selecting the specific households from the sampling units to become 
observational units used a systematic, rather than random, process. That process resulted 
in every third house on each street being excluded from the sample. Perhaps this is not 
important, but systematic sampling was not needed, and its use created an unnecessary risk 
of some unforeseen bias. 

The nature of the sample changed when it was found that too few subjects were 
recruited. At that point, volunteers were admitted. This lent a convenience sampling com-
ponent to the sample. It would have been better if the original sampling frame were used 
to (randomly) select additional subjects.
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Abstract 

This chapter describes common statistical methods that are used to generate the P-
values needed for hypothesis testing. The chapter begins with a description of how 
a statistical method is selected to analyze a given set of data. Then, the methods 
are explained in a mostly nonmathematical manner, elucidating the hypotheses tested, 
how the tests can be performed using Microsoft® Office Excel®, and how to obtain 
the corresponding P-values. Finally, the P-values are interpreted relative to the null 
hypothesis. Numerous examples demonstrate these procedures. 

To further examine hypothesis testing, we will look at the interpretation of a few basic 
statistical methods. As much as possible, we will avoid calculations. We will do this by 
using Microsoft® Office Excel®. To prepare to use Excel for statistical analysis, you must 
install an add-in that comes with Excel, but is inactive until the user installs it. To do that, 
start Excel and open a blank worksheet. Then, click on “File” in the main menu. Then, 
click on “Options” followed by “Add-ins.” On the resulting screen, you will see “Manage” 
with a selection box. In that box, select “Excel Add-ins” and click “Go.” If you are using 
Excel for Mac, in the file menu go to “Tools” then “Excel Addins.” This will result in a 
menu being displayed that lists available add-ins. Put a check in the box next to “Analysis 
Toolpak” and click “Ok.” Now click on “Data” in the main menu. Notice “Data Analysis” 
on the far right. Clicking on “Data Analysis” brings up a list of available statistical tests 
and other analysis tools. 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 
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3.1 Selecting a Test 

To select a statistical test, we need to identify two things. The first of these is the type of 
variable that represents the data. The second is the type of data. 

There are two types of variables: the dependent variable and the independent variable. 
The dependent variable represents the data of primary interest. It is what we designed the 
study to measure. If there is a causal relationship between the variables, the dependent 
variable represents what is caused. For example, suppose we want to look at the relation-
ship between dietary sodium intake and diastolic blood pressure. Diastolic blood pressure 
is represented by the dependent variable. Every dataset has a dependent variable. 

The independent variable represents the data that specifies the conditions under which 
we are interested in looking at the dependent variable. If there is a causal relationship, 
the independent variable represents the cause. In the example of a study looking at the 
relationship between dietary sodium intake and diastolic blood pressure, dietary sodium 
intake is represented by the independent variable. A data set can contain one, more than 
one, or no independent variables. 

Data can be of two types: continuous data or nominal data.1 Continuous data can be 
ordered, and the data values are evenly spaced. Dietary sodium intake and diastolic blood 
pressure are examples of continuous data. Continuous variables represent continuous data. 

Nominal data are categories of things that cannot be ordered in a meaningful way. 
Nominal variables are dichotomous. Which of two treatments someone receives and 
whether someone is cured are examples of nominal data. Nominal variables represent 
nominal data. 

The logical processes for selecting statistical tests are organized into flowcharts. 
Flowchart 3.1 shows the process for selecting a test to analyze a dataset that contains 
a continuous dependent variable. 

Flowchart 3.2 shows the process for selecting a test to analyze a dataset that contains 
a nominal dependent variable. 

Now, let us look at an example of using those flowcharts. 

Example 3.1 Suppose we are interested in estimating the diastolic blood pressure related 
to the dietary sodium intake of persons in a population. To study this, we take a simple 
random sample from the population and determine both the daily average sodium intake and 
diastolic blood pressure for persons in the sample. What method should we use to analyze 
our data?

1 Actually, there are three types of data. The third is ordinal data. Ordinal data can be ordered, but 
the spacing between values is undefined. We will not look at methods of analyzing ordinal data. 
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Flowchart 3.1 Selection of a statistical test for a continuous dependent variable 

Flowchart 3.2 Selection of a 
statistical test for a nominal 
dependent variable 
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The dependent variable represents diastolic blood pressure (continuous data), so we use 
Flowchart 3.1. There is one independent variable, dietary sodium intake. That independent 
variable represents continuous data. We are told that our interest is in estimating diastolic 
blood pressure. This brings us to regression analysis.
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3.2 Student’s t-Tests 

There are two Student’s t-tests for a continuous dependent variable. One is used when 
there is no independent variable. This is called the paired t-test. It gets this name because 
this type of dataset usually consists of differences between two measurements of contin-
uous data on the same individual or very similar individuals. The other Student’s t-test 
is used when there is a nominal independent variable. This nominal independent variable 
distinguishes two groups of continuous dependent variable values. This Student’s t-test is 
called the independent sample t-test. 

3.2.1 Paired t-Test 

Let us begin by considering the type of data we would analyze with a paired t-test. 

Example 3.2 Suppose we are interested in the ability of an antihypertensive medication to 
lower diastolic blood pressure. To study this, we select a sample of 12 hypertensive persons 
and measure their diastolic blood pressure. Then we give them the medication for one week 
and measure their blood pressure again. Suppose we observe the following results and input 
them into Excel: 

Before After 

91 79 

94 84 

96 84 

93 81 

99 85 

95 85 

92 81 

90 78 

86 76 

97 85 

98 86 

88 78 

Our interest in these data is to test the null hypothesis that the mean difference in diastolic 
blood pressure is equal to zero in the population versus the alternative hypothesis that it is 
not equal to zero. We use this two-tailed alternative hypothesis because it is possible that 
the medication could result in a higher diastolic blood pressure. We plan to set alpha to 0.05 
to allow a 5% chance of making a type I error.
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Although our interest is in the difference in diastolic blood pressure, we have set up the 
data in Excel as two columns of data. This is because the analysis tool for the paired t-test in 
Excel asks for two columns of data rather than the differences. We will see how that analysis 
tool works in the next example. 

Example 3.3 To begin doing the paired t-test in Excel, access the statistical procedures by 
clicking “Data” in the main menu and then clicking “Data Analysis” in the submenu. This 
brings up the list of available analysis tools. From that list, select “t-Test: Paired Two-Sample 
for Means” then click “Ok.” This invokes the following dialog box: 

In this dialog box, the two columns of data are called “Variable 1” and “Variable 2.” This 
is unfortunate because these columns are not two variables, but rather two observations of 
the same variable. 

I have already identified the columns by selecting the “Variable 1 Range” and “Variable 
2 Range.” To do that, click the arrow on the right side of the input box, highlight the column 
of data, and click “Enter” on your keyboard. As part of the area I highlighted are the names 
of the columns in the first row, so I have put a check in the box next to “Labels.” Clicking 
“Ok” results in the following output2 : 

t-test: paired two sample for means 

Before After 

Mean 93.25 81.83333333

2 To make the entire output readable, you need to highlight it then click on “Home” in the main 
menu. In the submenu, click on “Format” and select “Autofit Column Width” from the dropdown 
box. 
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t-test: paired two sample for means

Variance 16.20454545 11.78787879 

Observations 12 12 

Pearson correlation 0.957048729 

Hypothesized mean difference 0 

df 11 

t Stat 31.89105531 

P(T ≤ t) one-tail 1.71371E-12 

t Critical one-tail 1.795884819 

P(T ≤ t) two-tail 3.42743E-12 

t Critical two-tail 2.20098516 

The bottom line in that output is the two-tailed P-value. That is in the row labeled “P(T 
≤ t) two-tail.” It is equal to 3.43× 10–12. Since that is less than 0.05, we reject the null 
hypothesis and, through the process of elimination, accept the alternative hypothesis. 

3.2.2 Independent Sample t-Test 

Let us begin by considering the type of data we would analyze with the independent 
sample t-test. 

Example 3.4 Imagine we are interested in comparing diastolic blood pressure between a 
group of persons who receive a new antihypertensive medication to a group of persons who 
receive the standard medication. Suppose we have 20 persons who are randomly assigned 
to receive one of the medications. After one week on the assigned medication, we measure 
diastolic blood pressure and observe the following results: 

New Standard 

81 88 

78 83 

84 89 

79 92 

77 81 

87 79 

85 82 

89 84
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New Standard

74 95 

82 87 

Our interest in these data is to test the null hypothesis that the difference in mean diastolic 
blood pressure is equal to zero in the population versus the alternative hypothesis that it is 
not equal to zero. We use this two-tailed alternative hypothesis because it is possible that 
the standard treatment could be better than the new treatment in lowering diastolic blood 
pressure. We plan to set alpha to 0.05 to allow a 5% chance of making a type I error. 

In Student’s t-test, a  t statistic is calculated using the difference between the means, 
the variance of the data (how spread out the data values are), and the sample’s size. Then 
a P-value is determined either from a table or from a computer program. Excel can find 
a two-tailed P-value for a Student’s t statistic using the “T.DIST.2T” function or a one-
tailed P-value using the “T.DIST.RT” function.3 Excel also provides these P-values as 
part of its output from its Student’s t procedure in Data Analysis. We will see this output 
in the next example. 

There are two ways in which Student’s t-test is done. The more common way is assum-
ing the variances in the two groups are equal in the population from which the sample was 
taken. The other way is not assuming the variances are equal. The method for unequal 
variances often has a little less statistical power than the method for equal variances, so 
we use it only if we think the assumption has been violated. A good way to decide if the 
variances are unequal in the population is by comparing the variance estimates that are 
part of computer output from Student’s t-test. We can be comfortable with the assumption 
of equal variances unless the variance estimates are substantially different. 

In the next example, we will see how to perform Student’s t-test in Excel and how to 
interpret the output. 

Example 3.5 To begin doing Student’s t-test in Excel, access the statistical procedures 
by clicking “Data” in the main menu and then clicking “Data Analysis” in the submenu. 
This brings up the list of available analysis tools. From that list, select “t-Test: Two-Sample 
Assuming Equal Variances” then click “Ok.” This invokes the following dialog box:

3 This is for a positive t statistic. If it is negative, the “T.DIST” function can be used to find the one-
tailed P-value. 
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Again, Excel mislabels the two columns of data. They are not variable 1 and variable 2, 
but rather two groups of dependent variable values. 

In this dialog box, I have already selected the “Variable 1 Range” and “Variable 2 Range.” 
To do that, click the arrow on the right side of the input box, highlight the column of data, 
and click “Enter” on your keyboard as you did for the paired t-test dialog box. As part of 
the area I highlighted are the names of the groups in the first row, so I have put a check in 
the box next to “Labels.” I have also put zero in the input box next to “Hypothesized Mean 
Difference” indicating the value in the null hypothesis, but this is not necessary since zero 
is the default value. Clicking “Ok” results in the following output: 

t-test: two-sample assuming equal variances 

New Standard 

Mean 81.6 86 

Variance 22.26666667 26 

Observations 10 10 

Pooled variance 24.13333333 

Hypothesized mean difference 0 

Df 18 

t Stat – 2.002760526 

P(T ≤ t) one-tail 0.030249701 

t Critical one-tail 1.734063607 

P(T ≤ t) two-tail 0.060499402 

t Critical two-tail 2.10092204
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At the top of that output are the means and variances for the two groups. The first thing 
we do is compare the variance estimates. They are not substantially different, so Student’s 
t-test assuming equal variances is the proper method to analyze these data. The next thing 
we look at is the two-tailed P-value. It is in the row labeled “P(T ≤ t) two-tail.” That P-value 
is equal to 0.06. Since it is larger than 0.05, we fail to reject the null hypothesis. 

If we had been able to say that it is impossible for the standard treatment to be better 
than the new treatment, we could have used a one-tailed alternative hypothesis and then 
the one-tailed P-value would have been appropriate. The one-tailed P-value is half of the 
two-tailed P-value. Thus, it is equal to 0.03. In this circumstance, we would have been able 
to reject the null hypothesis and, through the process of elimination, accepted the one-tailed 
alternative hypothesis. 

3.3 Regression Analysis 

The purpose of regression analysis is to estimate values of one continuous variable from 
values of another continuous variable. The next example shows the type of data for which 
we might perform a regression analysis. 

Example 3.6 Suppose we are interested in how dose of a new antihypertensive medication 
effects the change in diastolic blood pressure. To study this, we measure diastolic blood 
pressure for 10 persons and then we give them each one of ten different doses of the med-
ication. After a week on the medication, we measure diastolic blood pressure again. We 
subtract the second measurement from the first measurement to get the change in diastolic 
blood. Suppose we get the following when we enter the results in Excel: 

Dose Change 

0.1 8 

0.2 4 

0.3 10 

0.4 8 

0.5 15 

0.6 12 

0.7 14 

0.8 18 

0.9 15 

1 20
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Our interest in those data is to estimate the change in diastolic blood pressure asso-
ciated with the dose of medication. Hypothesis tests include tests for the parameters of 
the regression equation (described shortly) and a test of the null hypothesis that knowing 
dose does not help estimate the change in diastolic blood pressure. We will perform those 
hypothesis tests with a two-tailed alternative hypothesis and an alpha of 0.05, allowing a 
5% chance of making a type I error. 

To begin a regression analysis, it is helpful to examine the data graphically. We do 
this with a scatter plot. A scatter plot has the independent variable on the horizontal 
(X) axis and the dependent variable on the vertical (Y) axis. We can generate a scatter 
plot in Excel by clicking on “Insert” in the main menu and then “Scatter” in the list 
of charts in the secondary menu. Then right click the plot area and pick “Select Data” 
from the dropdown menu. The “X values” are the independent variable values and the 
“Y values” are the dependent variable values. Axis labels can be added to the scatter plot 
by clicking on the scatterplot and then “Chart Design” in the main menu. Selecting “Add 
Chart Element” from the submenu allows you to add things such as axis labels to the 
plot. The next example shows a scatter plot for the data in Example 3.6. 

Example 3.7 Let us use Excel to generate a scatter plot for the data in Example 3.6. 
We get the following scatter plot in Excel: 
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To estimate dependent variable values from independent variable values, we need to 
fit a line to the points in the scatter plot. The simplest line is a straight line. A straight 
line has two parameters: the slope and the intercept. The slope tells us how much the 
dependent variable value changes as the independent variable is increased by one unit. 
The intercept tells us the value of the dependent variable when the independent variable
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is equal to zero in the population. In statistics, the slope is symbolized with the letter “b” 
and the intercept is symbolized with the letter “a.” Then, the formula for a straight line 
is as shown in Eq. 3.1. 

Y
∧

= a + b · X (3.1)

The “hat” over the “Y” in Eq.  3.4 is the statistical way to symbolize an estimated 
value. 

To estimate the slope and the intercept, we use regression analysis. To perform a 
regression analysis in Excel, we select “Data” from the main menu and click on “Data 
Analysis” in the submenu. Then we scroll down and select “Regression” in the popup 
menu. This generates a dialog box shown in Example 3.8. 

Example 3.8 Selecting the “Regression” analysis tool. results in the follow dialog box. 

In this dialog box, I have already selected the “Input Y Range” and “Input X Range.” To 
do that, click the arrow on the right side of the input box, highlight the column of data, and 
click “Enter” on your keyboard. As part of the area I highlighted are the names of the groups 
in the first row, so I have put a check in the box next to “Labels.” Clicking “Ok” results in 
the regression output.
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We will look at the regression output in the next example, but first, we need to discuss 
the hypothesis tests associated with regression analysis. There are three hypothesis tests. 
One tests the null hypothesis that the slope is equal to zero in the population and another 
tests the null hypothesis that the intercept is equal to zero in the population. The third 
tests what is called the omnibus null hypothesis. The omnibus null hypothesis states that 
knowing the value of the independent variable does not help estimate the value of the 
dependent variable. 

Example 3.9 Let us interpret the regression output for the data in Example 3.6. 
Excel provides us with the following output: 

SUMMARY OUTPUT 

Regression statistics 

Multiple R 0.889914897 

R2 0.791948523 

Adjusted R2 0.765942089 

Standard error 2.394121589 

Observations 10 

ANOVA 

df SS MS F Significance F 

Regression 1 174.5454545 174.5454545 30.4520222 0.000561481 

Residual 8 45.85454545 5.731818182 

Total 9 220.4 

Coefficients Standard 
error 

t stat P-value Lower 95% Upper 95% 

Intercept 4.4 1.635496403 2.690314691 0.027483234 0.628538531 8.171461469 

Dose 14.54545455 2.635841119 5.518335094 0.000561481 8.467194026 20.62371506 

The first thing we can examine in this output are the estimates of the slope and the 
intercept. These are in the bottom table of the output in the column labeled “Coefficients.” 
The estimate of the intercept is in the row labeled “Intercept” and the estimate of the slope 
is in the row labeled with the name of the independent variable.4 From those estimates, we 
know that the regression equation is:

4 The reason the row with the slope is labeled with the name of the independent variable is the fact 
that regression analysis can include more than one independent variable. We will see that when we 
discuss multiple regression analysis. 
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Change
∧

= 4.4 + 14.55 · Dose 

To estimate the change in diastolic blood pressure, we plug a value for dose in that 
equation. For a dose of 0.5, we estimate a change in diastolic blood pressure of 11.7 mm 
Hg. 

The P-values testing the null hypotheses that the parameters of the regression line are 
equal to zero in the population are in the column labeled “P-value.” The P-value for the 
intercept is 0.027. Since this is less than 0.05, we can reject the null hypothesis that the 
intercept is equal to zero in the population and, through the process of elimination, accept 
the alternative hypothesis that the intercept is not equal to zero. The P-value for the slope 
is equal to 0.00056. Since this is less than 0.05 we can reject the null hypothesis that the 
slope is equal to zero in the population and, though the process of elimination, accept the 
alternative hypothesis that the slope is not equal to zero. 

The P-value testing the omnibus null hypothesis in is the middle table titled “ANOVA” 
It is in the first row of the table under the label “Significance F.” In this output, the P-
value for the omnibus null hypothesis is 0.00056. Since that is less than 0.05, we reject the 
omnibus null hypothesis that knowing dose does not help estimate the change in diastolic 
blood pressure and accept the alternative hypothesis that knowing dose does help estimate 
the change in diastolic blood pressure. 

Note that the P-value for the omnibus null hypothesis is the same as the P-value for 
the null hypothesis that the slope is equal to zero in the population. This will always be 
the case for regression analyses that include one independent variable. This is because a 
slope of zero is a horizontal line and we cannot estimate different values of the dependent 
variable corresponding to different values of the independent variable from a horizontal 
line. Thus, the omnibus hypothesis is true if and only if the null hypothesis that the slope 
is zero in the population is true. 

3.4 Correlation Analysis 

Correlation analysis is performed on the same type of data sets that use regression anal-
ysis. However, these two analyses address different questions. Regression analysis is 
concerned with estimation of dependent variable values from values of the independent 
variable. Correlation analysis is concerned with the strength of the association between 
two variables. 

By strength of an association, we mean the consistency in direction and magnitude 
with which the value of one variable changes with an increase in the value of the other 
variable. If the first variable tends to increase in value as the other variable increases, we
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Fig. 3.1 Perfect direct 
association with a correlation 
coefficient equal to 1.0 

Fig. 3.2 Strong direct 
association with a correlation 
coefficient equal to 0.8 

say that they have a direct association.5 If the first variable tends to decrease in value as 
the other variable increases, we say that they have an inverse association.6 

The strength of an association between two continuous variables is reflected by the 
value of the correlation coefficient. We symbolize correlation coefficients with the letter r. 
Correlation coefficients have values ranging from minus one to positive one. A correlation 
coefficient of positive one indicates a perfect direct association. A correlation coefficient 
of negative one indicates a perfect inverse association. A correlation coefficient of zero 
indicates no association. 

To visualize the strength of association indicted by values of the correlation coefficient, 
examine Figs. 3.1, 3.2, 3.3 and 3.4. Figure 3.1 illustrates a perfect direct association with 
a correlation coefficient equal to one. Figure 3.2 illustrates a strong direct association with 
a correlation coefficient equal to 0.8. Figure 3.3 illustrates a weak direct association with a 
correlation coefficient equal to 0.2. Figure 3.4 illustrates no association with a correlation 
coefficient equal to 0.0. 

Although a correlation coefficient can be estimated whenever we have a data set that 
includes two continuous variables, it is not always appropriate. The value of the corre-
lation coefficient is influenced by how the independent variable is sampled. If extreme

5 In regression analysis, a direct association is identified by having a positive slope. 
6 In regression analysis, an inverse association is identified by having a negative slope. 



3.4 Correlation Analysis 37

Fig. 3.3 Weak direct 
association with a correlation 
coefficient equal to 0.2 

Fig. 3.4 No association with a 
correlation coefficient equal to 
0.0 

values are selected the correlation coefficient will be closer to one than if moderate val-
ues are selected. For example, consider the data in Fig. 3.2. The independent variable (X) 
has been selected uniformly throughout its range. If we were to consider only the ten 
most extreme values (0–4 and 16–20), the correlation coefficient is closer to one (0.85). 
If we were to select the eleven middle values (5–15), the correlation coefficient is further 
from one (0.69). 

Since the value of the correlation coefficient is influenced by how the independent 
variable is sampled, the way it is sampled should be so that its distribution in the sample 
reflects its distribution in the population if we want the estimate to reflect the strength 
of association in the population. A sample in which the distribution of the independent 
variable in the sample is representative of its distribution in the population is called a 
naturalistic sample. A naturalistic sample results from taking a simple random sample. 

A sample for which its distribution is determined by the researcher is called a purposive 
sample. A purposive sample results from taking a stratified random sample. Correlation 
analysis is appropriate only if we have a naturalistic sample.7 

The null hypothesis in correlation analysis is that the correlation coefficient is equal to 
zero in the population. A P-value for that null hypothesis is not part of the output from

7 Regression analysis, on the other hand, is appropriate regardless of how the independent variable 
is sampled. 
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the “Correlation” analysis tool in “Data Analysis” in Excel. Rather, the only information 
provided by the “Correlation” analysis tool is the estimate of the correlation coefficient. 
Fortunately, the correlation coefficient and the P-value testing the null hypothesis that the 
correlation coefficient is equal to zero in the population versus the alternative hypothesis 
that it is not equal to zero are part of the output from the “Regression” analysis tool. The 
estimate of the correlation coefficient is labeled “Multiple R” in the regression analysis 
output.8 The P-value for the test of the null hypothesis that the correlation coefficient 
is equal to zero in the population is the same as the P-value testing the omnibus null 
hypothesis. This is illustrated in the next example. 

Example 3.10 Suppose we are interested in the strength of the association between dietary 
sodium intake and blood pressure. To study this, we select a simple random sample of 
15 persons and determine their average daily sodium intake (the independent variable) 
and measure their diastolic blood pressure (the dependent variable). This is a naturalistic 
sample since the distribution of dietary sodium intake in the sample is representative of its 
distribution in the population. Suppose we observe the following results: 

NA DBP 

1.5 70 

2.3 73 

2.8 80 

1.9 78 

3.4 83 

2.6 72 

5.1 91 

2.2 78 

2.1 82 

3.8 79 

2 76 

2.3 77 

2.1 75 

2.8 76 

1.7 78

8 It gets that label because the “Regression” analysis tool can perform multiple regression analysis 
with more than one independent variable and then the correlation coefficient reflects the correlation 
of the entire collection of independent variables and the dependent variable. 
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Let us use the “Regression” analysis tool to perform a correlation analysis with an alpha 
of 0.05. 

SUMMARY OUTPUT 

Regression statistics 

Multiple R 0.743675201 

R2 0.553052804 

Adjusted R2 0.518672251 

Standard error 3.507002996 

Observations 15 

ANOVA 

df SS MS F Significance F 

Regression 1 197.8454232 197.8454232 16.08621001 0.001481755 

Residual 13 159.8879102 12.29907001 

Total 14 357.7333333 

Coefficients Standard 
error 

t stat P-value Lower 95% Upper 95% 

Intercept 67.46509579 2.746951186 24.55999078 2.80611E-12 61.53066855 73.39952304 

NA 4.04206122 1.007803865 4.010761775 0.001481755 1.864833337 6.219289103 

In the first table, the estimate of the correlation coefficient is to the right of the label 
“Multiple R.” That correlation coefficient is equal to 0.74. The P-value for the omnibus 
null hypothesis is in the second table below the label “Significance F.” That is also the 
P-value testing the null hypothesis that the correlation coefficient is equal to zero in the 
population. That P-value is equal to 0.0015. Since that P-value is less than 0.05, we 
reject the null hypothesis and, through the process of elimination, accept the alternative 
hypothesis that it is not equal to zero. 

To interpret the numeric magnitude of the correlation coefficient, we often take its 
square. The correlation coefficient squared appears in the regression output in the row of 
the first table labeled “R2.” The square of the correlation coefficient tells us the proportion 
of the variation in the dependent variable is associated with variation in the independent 
variable. In Example 3.10, the value of the square of the correlation coefficient is 0.55. 
That implies that 55% of the variation in diastolic blood pressure is associated with dietary 
sodium intake.
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3.5 Analysis of Variance 

One nominal independent variable separates dependent variable values into two groups. 
When we have more than one nominal independent variable, the dependent variable values 
are divided into more than two groups.9 In fact, k groups are specified by k − 1 nominal 
independent variables. When the dependent variable represents continuous data and we 
have more than one nominal independent the method we use to analyze those data is 
called analysis of variance. Analysis of variance (or ANOVA) compares the means of all 
the groups, testing the null hypothesis that the means are all equal to the same value in 
the population.10 The next example shows the type of dataset that we would analyze with 
ANOVA. 

Example 3.11 Suppose we have three drugs that are designed to lower serum cholesterol. 
To compare them to each other and to a low fat diet we take a sample of 40 persons and 
randomly assign each to receive one of the drugs or to follow a low-fat diet for a period of 
four weeks. Then, we measure each person’s serum cholesterol. Suppose we observe the 
following results: 

Drug A Drug B Drug C Diet 

129 162 141 188 

182 173 146 209 

175 155 138 174 

174 149 135 183 

184 161 159 192 

136 160 166 177 

125 165 185 162 

142 155 172 155 

142 169 155 185 

131 151 163 175 

Our interest in these data is to compare their means. With ANOVA we test the omnibus 
null hypothesis that all four means are equal to the same value in the population. The 
alternative hypothesis is that not all the means are equal to the same value. Let us test that 
null hypothesis with an alpha of 0.05, allowing us a 5% chance of making a type I error.

9 Nominal variables are always dichotomous. 
10 Analysis of variance might seem a strange name for an analysis that compares means. It gets this 
name from the way it compares means. ANOVA considers two sources of variation: the variation 
within groups and the variation between groups. If the variation between groups is much greater than 
the variation within groups, the means of those groups must be different. 
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We perform an ANOVA in Excel using the ANOVA analysis tool. If we look at the 
list of analysis tools in “Data Analysis,” we see there are three ANOVA analysis tools. 
One thing that separates them is whether they have one or two factors. A factor is a 
characteristic. The data in Example 3.11 have one characteristic or factor: treatment. That 
factor has four categories. If we also wanted to pay attention to gender, we could add that 
as another factor with two categories. Then, we would divide the persons into eight groups 
and use the “Anova: Two-Factor With Replication” analysis tool. There is replication 
because there would be more than one person in each group. The “Anova: Two-Factor 
Without Replication” is used when there is only one person in each group. 

ANOVA with more than one factor is called a factorial ANOVA. ANOVA with only 
one factor is called a one-way ANOVA. Since our data have categories of only one factor, 
it is a one-way ANOVA and we use the “Anova Single Factor” analysis tool. This is 
illustrated in the next example. 

Example 3.12 To perform a one-way ANOVA, with click on “Data” in the main menu bar 
and then select “Data Analysis” from the submenu. That invokes a popup menu that lists the 
analysis tools. From that menu, we select “Anova: Single Factor.” That opens the following 
dialog box. 

In that dialog box, you click on the arrow in the input box labeled “Input Range:” and 
highlight all the data. Make sure the circle by Columns is selected. I included the data names 
in the area I highlighted, so I checked the box next to “Labels in First Row.” Clicking on 
“Ok” results in the following output:
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Anova: single factor 

SUMMARY 

Groups Count Sum Average Variance 

Drug A 10 1520 152 565.7777778 

Drug B 10 1600 160 59.11111111 

Drug C 10 1560 156 260.6666667 

Diet 10 1800 180 233.5555556 

ANOVA 

Source of 
variation 

SS df MS F P-value F crit  

Between 
groups 

4640 3 1546.666667 5.528196982 0.003157921 2.866265551 

Within 
groups 

10072 36 279.7777778 

Total 14712 39 

The means of the groups are in the first table in the column labeled “Average.” The 
P-value testing the null hypothesis that all the means are equal to the same value in the 
population is in the second table under the label “P-value.” That P-value is 0.0032. Since 
that is less than 0.05, we reject the null hypothesis and, though the process of elimination, 
accept the alternative hypothesis that not all the means are equal to the same value. 

Unfortunately, the hypothesis test in ANOVA does not tell us which means are dif-
ferent. To determine that, we need to perform a posterior test. Excel does not have an 
analysis tool that helps with posterior testing and performing a posterior test by hand is 
complicated. The method for performing a posterior test appears in the appendix for those 
who wish to take the ANOVA analysis further. 

3.6 Multiple Regression Analysis 

When we have a dataset that includes a continuous dependent variable and more than one 
continuous independent variable, we need to perform a multiple regression analysis. A  
common reason for having more than one continuous independent variable is that there is 
a desire to control for one or more continuous variables when examining the relationship 
between a particular independent variable and the dependent variable. Including variables 
for which you want to control in the regression analysis controls for their effect. To see 
how this works, let us look at an example.
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Example 3.13 Suppose we have developed a new exercise program designed to help persons 
lose weight. We are interested in estimating the amount of weight lost in a three-month period 
based on the average time spent exercising per week. When looking at this relationship, we 
want to control for the average calories eaten per day. To study this, we measure each person’s 
weight before and after the three -month period and calculate the difference (before-after). 
We also ask each person to record the time spent exercising each day as well as keep a food 
log recording everything they eat each day. Suppose we make the following observations 
and input them into Excel. 

Change Time Calories 

6 7 3599 

−5 0 4328 

2 1 2407 

11 4.5 2913 

4 19 3301 

−2 1 3652 

16 17 1800 

4 10 2968 

−5 15.5 5143 

9 9.5 3788 

19 24.5 1900 

19 8.5 1925 

17 20.5 2446 

16 18 1438 

6 4 1857 

11 6.5 2476 

11 15.5 1850 

4 5 3027 

9 22.5 3314 

6 14 3387 

To analyze data such as these with multiple regression analysis, we use the same “Re-
gression” analysis tool we previously used for regression analysis with one independent 
variable. This is illustrated in the next example. 

Example 3.14 To perform a multiple regression analysis, we click on “Data” in the main 
menu and select “Data Analysis” in the submenu. From the dropdown menu, we select the 
“Regression” analysis tool. this invokes the following dialog box:
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In that dialog box, we select the dependent variable values in the input box labeled “Input 
Y Range” and we select all the independent variable values in the input box labeled “Input 
X Range.” If the variable names are part of the areas highlighted, we check the box labeled 
“Labels.” Clicking on “Ok” results in the following output: 

SUMMARY OUTPUT 

Regression statistics 

Multiple R 0.860917087 

R2 0.741178231 

Adjusted R2 0.710728612 

Standard error 3.928729094 

Observations 20 

ANOVA 

df SS MS F Significance F 

Regression 2 751.406491 375.7032455 24.34113251 1.02449E-05 

Residual 17 262.393509 15.43491229 

Total 19 1013.8
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Coefficients Standard error t stat P-value Lower 95% Upper 95% 

Intercept 19.1270422 3.459683245 5.528553004 3.68359E-05 11.82774859 26.4263358 

Time 0.356922784 0.12179911 2.930421934 0.009339948 0.099949124 0.613896444 

Calories – 0.00529065 0.00096118 -5.50427983 3.8699E-05 −0.00731858 −0.00326272 

Our interest in performing this regression analysis was to estimate the change in weight 
from the time spent exercising. To do that, we need the multiple regression equation. The mul-
tiple regression equation is similar to the regression equation for one independent variable 
(Eq. 3.1) with the additional independent variable added to the equation as follows: 

Change
∧

= 19.127 + 0.357 · Time − 0.005 · Calories 

For example, we could use that equation to estimate the change in weight we could expect 
for someone who averaged 10 h per week exercising. Since we are controlling for the average 
calories per day consumed, we need to specify a value for the number of calories in our 
estimate. Suppose we were to select 2,000 cal. Then, plugging those values in the regression 
equation, we get the change in weight we would expect to observe, on the average. That 
change in weight is 12.1 pounds. 

There are four hypothesis tests in this multiple regression output. The first P-value is in 
the second table under the label “Significance F.” That P-value is 1.024× 10–5. It tests the 
omnibus null hypothesis that knowing Time and Calories does not help estimate the change 
in weight. Since that P-value is less than 0.05, we can reject the omnibus null hypothesis 
and, though the process of elimination, accept the alternative hypothesis that knowing the 
values of the independent variables does help estimate dependent variable values. 

Other null hypotheses tested in multiple regression are that the intercept and the slopes 
(called regression coefficients in multiple regression) are equal to zero in the population. The 
P-values for those null hypotheses are in the third table in the column labeled “P-value.” 
The P-value for the null hypothesis that the intercept is equal to zero is 3.684× 10–5. Since  
that is less than 0.05, we can reject the null hypothesis that the intercept is equal to zero. 
The P-value for the null hypothesis that the regression coefficient for Time is equal to zero 
in the population is equal to 0.00934. Since that is less than 0.05, we can reject the null 
hypothesis that the regression coefficient for Time is equal to zero in the population. The 
P-value testing the null hypothesis that the regression coefficient for Calories is equal to 
zero in the population is 3.870× 10–5. Since that is less than 0.05, we can reject the null 
hypothesis that the regression coefficient for Calories is equal to zero in the population.
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3.7 Z-Tests for Nominal Data 

For all the analyses for continuous dependent variables, we were able to use an analysis 
tool. There are no analysis tools for a nominal dependent variable. This means we must 
do these analyses manually. Fortunately, the calculations are not too complicated. 

3.7.1 Paired z-Test 

When we have a nominal dependent variable and no independent variables, we use some-
thing called a paired z-test. It has this name because this type of dataset usually results 
from a study with a paired design. This is where the same person makes a selection 
between two things. This is often called a preference study. The next example describes 
a preference study. 

Example 3.15 Suppose we are interested in comparing two treatments for migraine relief: 
a new medication and the current leading treatment. To study this, we take a sample of 
100 persons who have an average of one migraine headache per week. We give them both 
medications in a blinded manner and ask them to use each for one month each time they 
have a migraine. Then we ask them which of the two medications they prefer. Suppose 60 
persons say they preferred the new medication. 

Our interest in these data is to test the null hypothesis that there is no preference in the 
population. That is saying that the proportion favoring either group will be 0.5. The alter-
native hypothesis is that there is a preference. We use this two-tailed alternative hypothesis 
because it is possible that there could be a preference for either treatment. In testing the null 
hypothesis, we will allow a 5% chance of making a type I error by comparing the P-value 
to 0.05. 

The null hypothesis in a preference study is that there is no preference between the 
two things offered in the population. That is to say, 50% of the persons will prefer each 
of the offerings. To test that null hypothesis, we calculate a standard normal deviate or 
z-value. That calculation is shown in Eq. 3.2. 

z = 
p − θ

√
θ ·(1−θ)  

n 

(3.2)

where 

p observed proportion 
θ proportion in the null hypothesis (0.5) 
n sample’s size.
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To interpret a z-value, we use Excel to determine the corresponding P-value. We do that 
by using an Excel function. That function is “NORM.S.DIST.” Eq. 3.3 shows that function 
for a positive z-value. 

= 2 ∗ (1 − NORM.S.DIST(z,TRUE)) (3.3)

Equation 3.4 shows that function for a negative z-value. 

= 2 ∗ NORM.S.DIST(z,TRUE) (3.4)

The next example shows the test of the null hypothesis that there is no preference in 
the population for the study in Example 3.15. 

Example 3.16 In Example 3.15, we are told that 60 of 100 persons preferred the new 
treatment. That corresponds to a proportion of 0.6. The following calculation results in a 
z-value that represents a proportion of 0.6. Using Eq. 3.2, we get:  

z = 
0.6 − 0.5

√
0.5·(1−0.5) 

100 

= 2.00 

To interpret that z-value, we use the function in Eq. 3.3. The resulting P-value is 
0.0455. Since that P-value is less than 0.05, we can reject the null hypothesis that there 
is no preference in the population and, through the process of elimination, accept the 
alternative hypothesis that there is a preference. 

3.7.2 Independent Sample z-Test 

When we have a nominal dependent variable and one nominal independent variable, we 
use an independent sample z-test. Let us begin by considering the type of data for which 
we would use an independent sample z-test. 

Example 3.17 Suppose we have a new antiviral medication for treatment of patients with 
early covid-19 infections. Our interest is in how well the medication does at keeping patients 
from being hospitalized. To examine this, we identify 1,000 newly diagnosed covid-19 
patients and randomly assign 500 to receive the new medication and 500 to receive the 
current antiviral medication. Then we follow each patient for the course of their infection and 
determine how many are hospitalized. Among the patients receiving the standard treatment, 
100 (20%) are hospitalized. Among the 500 receiving the new treatment, 70 (14%) are 
hospitalized. 

Our interest in these data is to test the null hypothesis that the difference in proportions 
of persons being hospitalized is equal to zero in the population versus the alternative that
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it is not equal to zero. We choose a two-tailed alternative hypothesis because it is possible 
that the new treatment is worse than the standard treatment. To test this null hypothesis, we 
select an alpha of 0.05 giving us a 5% chance of making a type I error. 

Data such as these are often organized in a 2× 2 table. A 2× 2 table consists of 
four cells resulting from the intersection of two columns and two rows. The two columns 
are identified by the two groups being compared and the two rows are identified by the 
two possible outcomes (having or not having the event of interest).11 The next example 
organizes the data from Example 3.3 in a 2× 2 table.  

Example 3.18 Let us organize the data in Example 3.17 in a 2× 2 table.  

Groups 

Standard New 

Hospitalized Yes 100 70 170 

No 400 430 830 

500 500 1,000 

The analysis of 2× 2 table data involves calculation of a standard normal deviate or 
z-value. Equation 3.5 shows that calculation.12 

z = p1 − p2
√

p · (1 − p) · ( 1 n1 
+ 1 n2 

) 
(3.5)

where 

p1 proportion of observations in group 1 with the event 
p2 proportion of observations in group 2 with the event 
p marginal proportion of observations with the event 
n1 number of observations in group 1 
n2 number of observations in group 2. 

The next example shows the calculation of the z-value in an independent sample z-test. 

Example 3.19 Let us calculate the z-value for the data in the 2× 2 table in Example 3.18.

11 There is not a standard orientation of 2× 2 tables. Sometimes the rows specify the two groups, 
and the columns specify the events. 
12 2× 2 table data are often analyzed using a chi-square test, The z-test gives exactly the same P-
value as the most commonly used chi-square test (Pearson’s chi-square). 
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From the 2× 2 table in Example 3.18 we can determine the proportion of persons in the 
standard medication group who are hospitalized (100

/
500 = 0.20) and the proportion of 

persons in the new medication group who are hospitalized (70
/
500 = 0.14). The marginal 

proportion is determined from the values to the right of the 2× 2 table  (170
/
1, 000 = 0.17). 

The number of observations in the two groups are the values below the 2× 2 table (500). 
With those values, we are ready to use Eq. 3.5. 

z = 0.20 − 0.14
√
0.17 · (1 − 0.17) · (1/500 + 1

/
500) 

= 2.526 

To find the P-value associated with that z-value, we use the Excel function 
“NORM.S.DIST” as shown in Eqs. 3.3 and 3.4. 

The next example determines and interprets the P-value for the z-value calculated in 
Example 3.19. 

Example 3.20 Let us determine and interpret the P-value for the result of Example 3.19 
Using the function in Eq. 3.3 in Excel, we get a P-value of 0.012. Since this is less 

than 0.05, we reject the null hypothesis and, through the process of elimination, accept the 
alternative hypothesis that the difference in the proportions hospitalized is not equal to zero 
in the population. 

3.7.3 Test for Trend 

When we have a nominal dependent variable and a continuous independent variable, 
we perform a regression analysis called a test for trend. Like regression analysis, the 
objective for the test for trend is to estimate the probability of the event represented by 
the dependent variable for values of the independent variable. To do this, we estimate 
parameters of a regression equation. The equation is shown in Eq. 3.6. 

p
∧ = a + b · X (3.6)

where 

p
∧

estimated probability of the dependent variable event 
a intercept 
b slope 
X value of the independent variable.



50 3 Basic Statistical Methods

Equation 3.6 for a nominal dependent variable is very similar to the regression equation 
for a continuous dependent variable (Eq. 3.1). The only difference is what is on the 
lefthand side of the equal sign. 

To estimate the parameters of that regression equation, we can use the “Regression” 
analysis tool in Excel. To do that, we need to represent the dependent variable event 
quantitatively. We do that by using a dummy variable.13 A dummy variable has the values 
of zero and one. One signifies that the event occurred and zero signifies that the event did 
not occur. Example 3.21 shows a dataset that includes a dummy variable. 

Example 3.21 Suppose we have a new treatment for bronchitis, and we are interested in 
its effectiveness at various doses. To study this, we randomly assign 20 persons with newly 
diagnosed bronchitis one of four different doses. Suppose we observe the following results: 

Dose Cure Dummy 

5 No 0 

5 Yes 1 

5 No 0 

5 No 0 

5 No 0 

10 No 0 

10 Yes 1 

10 No 0 

10 No 0 

10 Yes 1 

15 Yes 1 

15 No 0 

15 Yes 1 

15 No 0 

15 Yes 1 

20 Yes 1 

20 Yes 1 

20 Yes 1 

20 No 0 

20 Yes 1

13 This is also called an indicator variable. 
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In that dataset, I have created a dummy variable to represent the nominal dependent 
variable (Cure) that is equal to one if the person was cured and equal to zero if the person 
was not cured. 

Once we have a dataset that includes a dummy variable representing the nominal 
dependent variable, we can use the “Regression” analysis tool in Excel to estimate the 
slope and intercept of the regression equation that we can use to estimate the probability 
of being cured for various doses. In that regression analysis, we set the dummy variable 
to be the dependent variable. This is illustrated in the next example. 

Example 3.22 For the data in Example 3.21 let us estimate the slope and intercept of the 
regression equation for being cured as the dependent variable and dose as the independent 
variable. To do that, we click on “Data” in the main menu and select “Data Analysis” from 
the submenu. This creates a popup menu with a list of the analysis tools available in Excel. 
From that list, we select the “Regression” analysis tool. That selection results in the following 
dialog box. 

In that dialog box, we identify the dummy variable by clicking the arrow in the input 
box labeled “Input Y Range,” highlighting the dummy variable, and clicking “Enter” on the 
keyboard. Then, we identify the independent variable by clicking the arrow in the input box 
labeled “Input X Range” and highlighting the column with the doses. If we have included the
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variables names in the areas we highlighted, we check the box labeled “Labels.” Clicking 
“Go” results in the following output: 

SUMMARY OUTPUT 

Regression statistics 

Multiple R 0.447213595 

R2 0.2 

Adjusted R2 0.155555556 

Standard error 0.471404521 

Observations 20 

ANOVA 

df SS MS F Significance F 

Regression 1 1 1 4.5 0.048037528 

Residual 18 4 0.222222222 

Total 19 5 

Coefficients Standard error t stat P-value Lower 95% Upper 95% 

Intercept 1.66533E-16 0.25819889 6.44981E-16 1 −0.542455738 0.542455738 

Dose 0.04 0.018856181 2.121320344 0.048037528 0.000384634 0.079615366 

The parameters of the regression line are in the last table in the column labeled “Coef-
ficients.” The intercept is in the row labeled “Intercept” and the slope is in the row labeled 
“Dose.” From those estimates, we can write the regression equation. 

p
∧ = 1.7 × 10−16 + 0.04 · Dose 

We can use that regression equation to estimate the probability of being cured correspond-
ing to a specified dose. For example, the probability of being cured if a person received a 
dose of 12 mg is:  

p
∧ = 1.7 × 10−12 + 0.04 · 12 = 0.48 

So, we estimate that there is a 48% chance of being cured if a person receives a dose of 
12 mg. 

We can use the estimates of the slope and intercept from the output from using the 
“Regression” analysis tool, but we cannot use the P-values in that output to test null 
hypotheses about the regression equation. Instead, we need to calculate a z-value for
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the test of the null hypothesis that knowing dose does not help estimate the probability 
of being cured (the omnibus null hypothesis). We can calculate that z-value by using 
information from the output. We use the regression and total sums of squares and the total 
degrees of freedom. Those values are in the middle table of the output labeled “ANOVA.” 
The sums of squares are in the column labeled “SS” and the degrees of freedom is in the 
column labeled “df.” From those values, the z-value is calculated as shown in Eq. 3.7. 

z =
√
Regression SS 

Total SS 
Total df 

(3.7)

where 

Regression SS regression sum of squares 
Total SS total sum of squares 
Total df total degrees of freedom. 

The next example shows the test of the omnibus null hypothesis for the regression 
equation in Example 3.22. 

Example 3.23 Let us test the omnibus null hypothesis for the regression equation in Example 
3.22 allowing a 5% chance of making a type I error. 

We begin by calculating a z-value using Eq. 3.7. 

z =
√

1 
5 
19 

= 1.949 

To interpret that z-value, we use the Excel function in Eq. 3.3. That P-value is equal to 
0.051. Since that P-value is greater than 0.05, we fail to reject the omnibus null hypothesis 
which states that knowing dose does not help estimate the probability of being cured.
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Abstract 

Many types of research take relatively long periods of time to collect the sample. 
When involved in this type of research, it is often desirable to analyze the data as they 
accumulate. There is a danger in doing this. This chapter describes that danger and 
provides methods that can be used for these accumulating data that avoid the danger. 
There are two approaches described. The first changes the way P-values are interpreted, 
making it harder to reject the null hypothesis while the data are gathered. The other 
involves prediction of what the future observations will show and determination of the 
probability that the null hypothesis will be rejected at the planned end of the study. 

4.1 The Problem 

In Chap. 1, we discussed the multiple comparison problem. Recall that this occurs when 
a study includes several hypothesis tests. Another time we encounter multiple hypothesis 
tests is when accumulating data are analyzed before the planned sample size is reached. 
This is called interim analysis. This occurs very commonly in clinical trials of therapeutic 
interventions. Clinical trials typically take a long time (years) to complete, because they 
must wait for eligible patients to be recruited. This is true even of multicenter studies that 
recruit patients from several clinical sites. 

There are a couple of reasons for wanting to end a clinical trial early. One reason 
is financial. Clinical trials are expensive.1 If sufficient information to draw a conclusion 
has been collected before the planned end of a study, a lot of money can be saved by 
stopping the study early. Other reasons are ethical. If the efficacy of the intervention can

1 A recent estimate is that the median cost of a clinical trial is $41,177 per patient. 
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be established, it is ethically mandated to stop the trail and provide patients with the more 
efficacious treatment. Another ethical concern is safety. Many interventions have adverse 
events. If those adverse events outweigh the benefits of treatment, a clinical trial should 
be stopped, and patients provided the safer treatment.

So, there is strong motivation to analyze accumulating data in a clinical trial or similar 
study to potentially end a study before the planned end. A problem with doing this is 
like the problem encountered when a study contains several hypothesis tests. Each time 
the data are analyzed, there is a chance of making a type I error by rejecting a true 
null hypothesis. When this is done several times, the overall (experiment-wise) chance 
of making a type I error can become large. with as few as five analyses, the overall 
chance of making at least one type I error is 0.2262. This is substantially larger than the 
test-wise chance of making a type I error of 0.05. The problem is more serious when 
analyzing accumulating data, because making a type I error results in stopping the study 
and not analyzing the data further. This means that if one test results in a type I error, all 
subsequent tests will result in a type I error as well. 

4.2 Sequential Analysis 

One solution to this problem is to use a lower value of alpha on each one of the hypothesis 
tests on accumulating data. This is the frequentist solution to the multiple comparison 
problem. In interim analysis, these methods are called sequential analysis. There are two  
types of sequential analysis. Open-ended methods are used when a study has no planned 
end but continues until a conclusion, to either reject or fail to reject the null hypothesis, is 
reached. Close-ended methods are used when statistical methods like those in Chap. 5 are 
used to select a sample size. In close-ended studies, the study continues until a conclusion 
is reached or the planned end of the study is reached. 

The first methods proposed for sequential analysis are known collectively as classical 
sequential analyses. One method, developed by Wald, is an open-ended approach. This 
method is designed to compare two groups with a dichotomous outcome (e.g., cured 
or not cured). Persons in one group are paired with persons in the other group. The 
method examines the results when the outcome of each pair becomes known. At that 
time, the member of the pair with the better outcome is identified and the difference in 
the pairs with the better outcomes in the two groups is determined. Then that difference 
is compared to a graph such as in Fig. 4.1. 

Another method was developed by Armitage. This is a close-ended method. It is like 
the open-ended method by Wald in that it examines pairs of patients in two groups by 
determining the difference in a better dichotomous outcome. It differs from Wald’s method 
in that the study ends if the number of pairs reaches a planned limit. Figure 4.2 illustrates 
this method.
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Fig. 4.1 Wald’s method for open-ended classical sequential analysis. The difference in better out-
comes between two groups is plotted until the value falls in either the terminate and reject the null 
hypothesis (H0) areas or the terminate and fail to reject the null hypothesis area. Otherwise, the study 
continues 

Fig. 4.2 Armitage’s method for close-ended classical sequential analysis. The difference in better 
outcomes between two groups is plotted until the value falls in either the terminate and reject the 
null hypothesis (H0) areas or the terminate and fail to reject the null hypothesis area. If we reach the 
planned end of the study without drawing a conclusion, we fail to reject the null hypothesis 

The disadvantages of the classical sequential analysis approaches are that they require 
the data to be paired and they are designed to examine the data after the results of each 
pair are known. Pairing patients is difficult to do for it requires assigning similar patients 
to the groups being compared. This makes patient recruitment more difficult. Analyzing 
the data after the results of each pair are known is much more frequent than is normally 
considered necessary. This choice reduces statistical power more than necessary. If the 
number of analyses were reduced, it would be easier to reject the null hypothesis.
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Fig. 4.3 A comparison of 
three methods for group 
sequential analysis for four 
interim analyses and one final 
analysis. P = Pocock, HP = 
Haybittle-Peto, OB = 
O’Brien-Fleming 

To overcome these disadvantages, several statisticians have developed what are called 
group sequential analyses. In these methods, the alpha is reduced according to the number 
of times the data are analyzed. All group sequential analyses are close-ended methods. 

The most straightforward of group sequential analysis was suggested by Pocock. This 
approach is like the Bonferroni correction in multiple comparison. Alpha is reduced to a 
value equal to the desired experiment-wise alpha by dividing that alpha by the number 
of comparisons. A disadvantage of this method is that the statistical power at the final 
analysis if the study goes to its planned end is reduced so that a result that would have 
been statistically significant if the accumulating data had not been analyzed might not 
meet the criterion for rejecting the null hypothesis. 

A solution to this problem was suggested by Haybittle and Peto. They reduced the 
alpha at each interim analysis well below that required by Pocock allowing a larger alpha 
at the planned end of the study. This provides nearly the same statistical power at the 
planned end as if the accumulating data had not been analyzed. Another solution was 
suggested by O’Brien and Fleming. They set the alpha at the first analysis very low then 
gradually increased it with each interim analysis. The O’Brien-Fleming approach has 
nearly the same statistical power at the planned end of the study as the Haybittle-Peto 
approach. The alphas for each of these methods are compared in Fig. 4.3. 

4.3 Stochastic Curtailment 

All the methods in sequential analysis reduce statistical power to some degree. An alter-
native approach that does not reduce statistical power is stochastic curtailment. To see 
what we mean by stochastic curtailment, let us begin by looking at an example. 

Example 4.1 Suppose we are interested in a new topical treatment for arthritis pain. To 
study this new treatment, we plan to recruit 200 persons with arthritis and give them the new 
treatment and the leading currently available topical treatment in unlabeled bottles. They
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are asked to use one of the treatments for a week and then the other treatment for a week 
and identify which treatment gave them the better relief from pain. After 150 persons had 
been recruited, 105 preferred the new treatment and 45 preferred the currently available 
treatment. It was decided that the study could stop recruiting persons and conclude that 
the new treatment is better. The argument for this was even if the remaining 50 persons all 
preferred the currently available treatment, more persons among the planned 200 persons 
would prefer the new treatment. 

Example 4.1 shows what is called deterministic curtailment. With deterministic curtail-
ment, it is certain that the outcome will go a particular way. What if after the results from 
150 persons were known, 90 persons prefer the new treatment. It could be argued that the 
study could stop and conclude the new treatment is better since it is very unlikely that 40 
or more of the remaining 50 persons would prefer the currently available treatment since 
so far 40% of the persons preferred the currently available treatment. This is an example 
of stochastic curtailment. With stochastic curtailment the result is not certain, but it is 
very likely. 

Stochastic curtailment involves predicting what would happen at the planned end of 
the study and considering the chance that the result would be statistically significant. 
That prediction is usually made considering one of three assumptions. One assumption 
is that the current trend will continue. In the example, the current trend is that 60% of 
the persons prefer the new treatment. If 60% of the remaining 50 persons prefer the new 
treatment, that implies 30 (on the average) of the remaining persons will prefer the new 
treatment. We will consider the other possible assumptions later on, but for now let us 
assume that the current trend will continue. 

It is not enough to consider what the estimate is likely to be. We also must consider 
what the appropriate hypothesis test will show. For a paired study like the one in the 
example, the hypothesis test involves calculation of a z-value. That z-value is calculated 
as shown in Eq. 4.1.2 

z = p − θ√
θ ·(1−θ)  

n 

(4.1)

where 

p observed proportion 
θ proportion in the null hypothesis (0.5) 
n sample’s size. 

The next example shows the expected results if the current trend were to continue.

2 This is the same as Eq. 3.2 in Chap. 3. It is the method for the paired z-test. 
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Example 4.2 For the study of a new pain relief medication compared to the leading available 
medication in Example 4.1, let us assume that after 150 of 200 persons are observed, 90 
prefer the new treatment. What results would we expect to observe if the current trend were 
to continue? 

So far, 90 of 150 persons prefer the new treatment. That is 60% (90/150 = 0.60) of the 
persons observed so far. If that trend were to continue, 30 of the remaining 50 persons would 
also prefer the new treatment. That means that, if the study were to go to its planned end and 
recruit 200 persons, we would expect 120 (90 + 30) persons would prefer the new treatment 
if the current trend were to continue. That means 60% (120/200 = 0.60) of the persons at 
the planned end would prefer the new treatment. 

The null hypothesis in a paired preference study such as this is that half of the persons 
will prefer one thing and half will prefer the other. In other words, there is no preference. 
To test that null hypothesis, we use Eq. 4.1. In the current example, we would expect to get 
the following z-value after 200 persons are observed if the current trend were to continue. 

z = 0.6 − 0.5√
0.5·(1−0.5) 

200 

= 2.828 

To find the two-tailed P-value corresponding to that z-value, we use the Excel function 
in Eq. 3.3. That P-value is 0.0047. Since that P-value is less than 0.05, we can reject 
the null hypothesis if the current trend were to continue, and we were to observe these 
results. 

So, we expect a P-value of 0.0047 at the planned end of the study if the current trend 
were to continue. But this is only what we would expect to get on the average. Chance 
will influence the remaining observations. Even with the current trend, just by chance we 
might get 29 or 31 persons preferring the new treatment or even a more extreme result. 
To take this role of chance into account, we calculate the conditional power. Conditional 
power is the probability we will be able to reject the null hypothesis at the planned end 
of a study under the condition that some assumption is true. The assumption we are 
considering is that the current trend will continue. To get the conditional power, we need 
to calculate a z-value. Equation 4.2 shows that calculation. 

zCP = zalpha − zassumption√
n−nt 

n 

(4.2)

where 

zalpha z-value corresponding to alpha (equal to 1.96 for a two tailed alpha of 0.05) 
zassumption z-value expected at the planned end if some assumption is true 
n number of observations at the planned end 
nt number of observations at the time of the analysis.
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The conditional power is the complement of the probability (1-probability) of getting a 
z-value as small or smaller than the z-value calculated in Eq. 4.2. We determine that 
probability in Excel with the function in Eq. 4.3. 

= 1 − NORM.S.DIST(zCP,TRUE) (4.3)

The next example shows calculation of conditional power. 

Example 4.3 For the expected results in Example 4.2, let us calculate the conditional power. 
We begin by calculating the z-value in Eq. 4.2 

zCP = 1.96 − 2.83√
200−150 

200 

= −1.737 

Then, we use the Excel function in Eq. 4.3 in Excel to determine the conditional power. 
That conditional power is 0.9588. That means that there is a 95.88% chance of rejecting 
the null hypothesis at the planned end of the study if the current trend were to influence the 
remaining observations. If that is considered large enough, the study could be curtailed at 
this point. If it is not large enough, the study could be continued and reanalyzed after a few 
more observations have been made. 

Assuming the current trend will continue is the most likely assumption of what will 
influence the remaining observations, but often we want to be more conservative. Another 
assumption we could make is that the null hypothesis is true and will influence the 
remaining observations. The next example considers that assumption. 

Example 4.4 If the null hypothesis influences the remaining observations, that means that 
half of the remaining 50 persons will prefer the new treatment. So, at the planned end of the 
study, we expect 115 (90 + 25) persons to prefer the new treatment, on the average. Then, 
the proportion preferring the new treatment would be 0.575. The z-value we would expect 
for that proportion is calculated using Eq. 4.1. 

z = 0.575 − 0.5√
0.5·0.5 
200 

= 2.121 

The P-value associated with that z-value is 0.0339. If the null hypothesis influenced the 
remaining observations and we were to observe these results, we would be able to reject the 
null hypothesis. This is the result we would get on the average. To take chance into account, 
we need to calculate conditional power. To begin, we use Eq. 4.2. 

zCP = 1.96 − 2.121√
200−150 

200 

= −0.323
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From that result, we use the Excel function in Eq. 4.3 to determine the conditional 
power. That conditional power is 0.627. That is probably not large enough to stop the 
study at this point and reject the null hypothesis. 

The biggest disadvantage of stochastic curtailment is that there are no rules of thumb 
for how large a conditional power should be to curtail a study and reject the null hypothe-
sis. So, it remains a judgement call depending on the consequences of being wrong. This 
is a subjective judgement. 

There are two important advantages of stochastic curtailment. One of these is the accu-
mulating data can be analyzed as often as a researcher wants without affecting statistical 
power. This is not true of sequential analysis. 

Another advantage is that stochastic curtailment can be used to stop a study because it 
is unlikely to result in a statistically significant result. This means a researcher need not 
continue a futile study. When this is the goal of stochastic curtailment, a third assumption 
is most often used. That is the assumption that the remaining observations will reflect the 
threshold of importance.3 Stopping a study for futility is illustrated in the next example. 

Example 4.5 Suppose in the study of a new analgesic medication for arthritis described 
in Example 4.1 we were to observe 80 of 150 persons preferring the new medication. At 
this point, we might wonder if it is worthwhile to continue the study. To decide, we can use 
stochastic curtailment. 

Suppose we believe the new treatment will be worthwhile if at least 55% of the persons 
with arthritis prefer it. Making the assumption that this threshold of importance will influence 
the remaining observations, we would expect 27.5 of the 50 persons not yet recruited to prefer 
the new medication on the average. Then, at the planned end of the study we would have 
53.75% of the persons preferring the new treatment. At that point, testing the null hypothesis 
that half of the persons prefer the new treatment in the population yields the following result 
(from Eq. 4.1): 

z = 0.5375 − 0.5√
0.5·0.5 
200 

= 1.061 

This z-value is associated with a P-value of 0.289. With that P-value, we cannot reject 
the null hypothesis, but it is possible by chance that sufficient persons of the remaining 50 
will prefer the new treatment to reject the null hypothesis. To consider this, we calculate the 
conditional power. To do that, we begin by using Eq. 4.2. 

zCP = 1.96 − 1.061√
200−150 

200 

= 1.799

3 This is the same as the minimal detectable difference used in sample size planning discussed in 
Chap. 5. 
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The conditional power is found in Excel using the function in Eq. 4.3. That conditional 
power is equal to 0.036. Now the researchers must decide if this is a small enough chance 
of a statistically significant result to stop the study at this point or whether they are willing 
to continue the study with only a 3.6% chance of success.



5Planning the Sample’s Size 

Abstract 

In Chap. 2, we examined various methods that can be used to select the individuals 
that will be in a sample. Another aspect of taking a sample is to decide how many 
observational units the sample should contain. What we would like to do is to take a 
sample large enough to allow rejection of false null hypotheses. In other words, our 
sample should have sufficient statistical power. On the other hand, collecting data for 
large samples is costly. Therefore, we do not want to take a larger sample than is 
necessary to meet our needs. 

5.1 Studies with No Independent Variable 

As we learned earlier, independent variables are predictor variables. We will first consider 
datasets in which there is no predictor variable. 

Although there are as many methods of estimating the required sample’s size as there 
are methods to analyze data, the basic principles of those methods are the same. First, we 
will examine those principles for datasets with no independent variable and a dichotomous 
outcome (dependent) variable. Then, we will see how those principles apply to other sorts 
of analyses. 

The first step in estimating the required size of a sample is to determine what statistical 
method will be used to analyze the data obtained from that sample. This is illustrated in 
the next example. 

Example 5.1 Suppose we are interested in studying a new drug designed to treat pain 
associated with arthritis. In this study, we will select sequential patients seen at a particular 
clinic (a convenience sample) who have advanced osteoarthritis. These patients will be
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randomized to receive either the experimental drug or standard treatment for two weeks. 
Then, each patient will receive the other treatment for another two weeks. At the end of 
the four-week period, patients will be asked which treatment gave greater relief from pain. 
First, we need to consider what method of analysis we will use to test the null hypotheses 
that there is no preference for one of the two treatments over the other.

This study makes evaluation of both treatments on each patient. Thus, this is a paired 
study and the data of interest to us will be the proportion preferring the new treatment. Using 
the flowcharts in Chap. 3, we find that we can test the null hypotheses by using a paired 
z-test. 

In Chap. 3, we learned that the paired z-value is calculated as follows1 : 

z = 
p − θ√
θ ·(1−θ)  

n 

(5.1)

where 

p observed proportion 
θ proportion in the null hypothesis (0.5) 
n sample’s size. 

If we examine the equation used to test hypotheses, we can see that it contains n, the  
sample’s size. Thus, to estimate the sample’s size we will need for our planned study, we 
can begin by algebraically rearranging that equation to solve for n (Eq. 5.2). 

n =
(

z · √θ · (1 − θ)  
p − θ

)2 

(5.2)

Examination of Eq. 5.2 reveals that, to estimate the sample’s size we will need to 
provide a z-value, the sample’s proportion preferring the new treatment (p), and the 
hypothesized population’s proportion preferring the new treatment (θ ). We will consider 
how we can provide values for each of these one at a time. 

First, let us think about what the z-value is doing in Eq. 5.2. In hypothesis testing, 
we would use Excel to find a corresponding P-value that we would compare to alpha, 
the chance of making a type I error. In estimating the required sample’s size, that z-value 
should be selected to reflect the alpha we will use in statistical hypothesis testing (we will 
usually select z to be equal to 1.96 to reflect a two-tailed alpha of 0.05). Since this z-value 
usually represents a two-tailed alpha, we often give it the subscript of alpha divided by 2 
(zα/2).

1 This is Eq. 3.2. 
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We have two more values that we have to consider in Eq. 5.2. One of these is the 
population’s proportion preferring the new treatment. This value is specified in the null 
hypothesis to be equal to 0.5.2 The other is the sample’s estimate of the proportion 
preferring the new treatment. 

We will worry about providing a value for the sample’s estimate of the proportion in a 
moment but let us first think about what Eq. 5.2 does. It allows us to estimate the sample’s 
size that would be required to reject the null hypothesis for a given value of alpha. Recall 
from Chap. 1 that alpha is the probability of rejecting the null hypothesis given that the 
null hypothesis is true. Thus, Eq. 5.2 estimates the sample’s size that would be required 
only under the condition that the null hypothesis is true. 

What if the null hypothesis is false and, instead, the alternative hypothesis is true? 
We can estimate the required size of the sample under the assumption that the alternative 
hypothesis is true using an equation similar to Eq. 5.2 but based on the alternative, rather 
than the null, distribution (Eq. 5.3) 

n =
(

zβ · √θA · (1 − θA) 
p − θA

)2 

(5.3)

where 

zβ a z-value representing the chance of making a type II error (beta) 
θA proportion in the alternative hypothesis 
p observed proportion. 

Notice that the  z-value representing the probability of making a type I error in Eq. 5.2 is 
two-tailed, but the z-value representing the probability of making a type II error in Eq. 5.3 
is one-tailed. The reason for this distinction is that, when we consider the null distribution 
(Eq. 5.2) we have no way of knowing on which side of the proportion of that distribution 
(in this case, the proportion is equal to 0.5) the alternative distribution lies (i.e., whether 
the proportion will be less than or greater than 0.5). Equation 5.3, however, concerns 
the alternative distribution. When we consider the alternative distribution in Eq. 5.3, we  
assume that we know on which side of the null distribution the alternative distribution 
lies. In fact, we need to specify a particular value for the proportion of the alternative 
distribution in Eq. 5.3. 

Now, we have two equations that give us the required number of observational units in 
the sample. One equation addresses the type I error (Eq. 5.2) and one addresses the type 
II error (Eq. 5.3). What we need to do next is to find the size of the sample that satisfies

2 The null hypothesis is that there is no preference between the two things considered. No preference 
means that the probability of preferring either thing is 0.5. 
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both equations.3 The resulting equation is: 

n =
([

zα/2 · √θ · (1 − θ)
] − [

zβ · √θ A · (1 − θA)
]

θA − θ

)2 

(5.4)

The process that led to Eq. 5.4 abolished our need to guess what estimate of the 
proportion we expect to obtain in our sample (p). It left us with four quantities to specify, 
however. Two of these (zα/2 and zβ ) are obtained from Excel to reflect chosen probabilities 
of making an error (type I or type II) in hypothesis testing. The other two quantities reflect 
the values of the population’s proportion. One of these is the value of the population’s 
proportion according to the null hypothesis (θ ). This value is obtained by considering the 
null hypothesis that will be tested. With the null hypothesis that there is no preference, θ 
is equal to 0.5. 

The other value that is required to use Eq. 5.4 is the value of the proportion in the 
population if the alternative hypothesis is true (θA). If the population’s proportion actually 
is equal to the value of θA we use in Eq. 5.4, the probability that the planned sample will 
result in rejection of the null hypothesis is equal to the complement of the probability 
of making a type II error represented by zβ in the equation. If the actual population’s 
proportion is further from the value specified in the null hypothesis than the value of θA 
chosen to be used in Eq. 5.4, then the probability that the planned sample will result 
in rejection of the null hypothesis is greater than the complement of the probability of 
making a type II error represented by zβ (ie, the statistical power). For this reason, the 
value chosen for θA is referred to as the minimum detectable value. If the population’s 
value is at least as far from the null value as is the minimum detectable value, then the 
probability of obtaining a sample for which the null hypothesis will be rejected is at least 
as great as the complement of beta (ie, the statistical power). 

We will look at an example of how we can make these estimates and use Eq. 5.4 
to determine the sample’s size that is required for a study in just a moment, but there 
is one part of using that equation that we should discuss first. This is the fact that the 
two z-values in Eq. 5.4 will always have opposite signs. To help us understand what is 
happening, let us look at the null distribution and two possible alternative distributions 
(Fig. 5.1). 

Notice in Fig. 5.1 that when the alternative distribution is to the right of the mean of 
the null distribution, the cutoff between the null and alternative distributions corresponds 
to a positive standard normal deviate (z-value) in the null distribution and a negative 
standard normal deviate in the alternative distribution. When the alternative distribution

3 We can do that and get rid of the necessity of guessing the value we will get for the sample’s esti-
mate of the proportion at the same time. First, we algebraically rearrange Eqs. 5.2 and 5.3 so that 
both have the sample’s estimate of the proportion on the left-hand side of the equal’s sign. Then, 
we make those two rearranged equations equal to each other. Finally, we rearrange the combined 
equations once again to solve for the sample’s size. 
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Fig. 5.1 The null distribution 
and two alternative 
distributions each on its own 
standard normal scale 

is to the left of the mean of the null distribution, the cutoff corresponds to a negative 
standard normal deviate in the null distribution and a positive standard normal deviate in 
the alternative hypothesis. Thus, the two standard normal deviates in Eq. 5.4 always have 
opposite signs. 

Now, we are ready to look at an example of how we can estimate the sample’s size 
that will be required in a study. 

Example 5.2 In Example 5.1, we thought about planning a clinical trial of a new drug 
designed to treat arthritis pain. We discovered, in that example, that the method that we will 
use to analyze the data from this study will be a preference study testing the null hypothesis 
that the proportion in the population preferring the new drug is equal to 0.5. 

Now, suppose that we are willing to take a 5% chance of making a type I error (rejecting 
the null hypothesis when it is true) and that the alternative hypothesis that will be used in 
statistical inference is that the proportion is not equal to 0.5. Also suppose that we are willing 
to take a 10% chance of failing to reject the null hypothesis when the alternative hypothesis 
is false (i.e., beta is equal to 0.10). Imagine that the drug would be of interest clinically only 
if it were associated with at least a preference of 0.6. How many patients should we plan to 
recruit for this study? 

The first thing that we notice about this problem is the amount of information that is 
required to estimate the sample’s size for a planned study. First, we need to decide on 
the basic study design. This allows us to select the statistical procedure that will be used to 
analyze the data we will collect. Then, we need to specify the null and alternative hypotheses 
and the probabilities of making both type I and type II errors that we will tolerate during 
testing statistical hypotheses. We will use this information to select the z-values that will 
be used to estimate the required sample’s size. Finally, we need to select the minimum 
preference we would like to detect. 

To specify the value that will be used as the proportion of the alternative distribution, 
we have suggested the smallest value important to clinical use of the new drug. This is a 
very sensible way to choose a value for the alternative distribution. If we choose a sample’s
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size that is large enough to reject the null hypothesis with a given probability when the true 
value is equal to the smallest value of importance, then we can be even more certain of 
rejecting the null hypothesis if the true value is larger than this. If the true value is less than 
the smallest value of importance, we are not terribly concerned with the fact that we will 
have a low probability of rejecting the null hypothesis. That is because we are not likely to 
be missing an important finding. 

We learned in Example 5.1 that we use a paired z-test to analyze these data. Thus, we will 
use Eq. 5.4 to estimate the required sample’s size. Before we use Eq. 5.4, we need to use 
Excel to find the z-values that correspond to an alpha of 0.05 and a beta of 0.10. To do that, 
we use the Excel function “=NORM.S.INV(p).” The “p” in that function is the probability 
in the upper tail of the standard normal distribution. 

The z-value that represents the type I error should correspond to a probability equal to α/2 
in each tail since the alternative hypothesis is two-tailed. For a probability of making a type 
I error equal to 0.05 (i.e., 0.025 in each tail), the corresponding z-value is equal to 1.96.4 

As we discussed previously, the z-value representing the type II error probability should 
correspond to an area equal to beta in one tail. Since the alternative distribution is greater 
than (i.e., to the right of) the values from the null distribution, this z-value will be negative. 
Thus, we should use a value of -1.28 to represent the type II error.5 

Now, we are ready to estimate the required sample’s size by substituting these values in 
Eq. 5.4: 

n = 

⎛ 

⎝
[
1.96 · √0.5 · 0.5

]
−

[
−1.28 · √0.6 · 0.4

]

0.6 − 0.5 

⎞ 

⎠ 

2 

= 258.3 

Thus, we should plan to recruit 259 patients for this study.6 

If we are planning a sample with no independent variable and a continuous dependent 
variable, there is an additional value that requires our attention: the standard deviation7 

in the population8 (Eq. 5.5).9 

n =
((

zα/2 − zβ

) · σ 
μA − μ

)2

(5.5)

4 The function that yields this result is “=NORM.S.INV(0.025).” 
5 This result comes from the function “=NORM.S.INV(1-0.10).” 
6 The usual practice in estimating the size of a planned sample is to round the result of the calculation 
up to the next integer. 
7 The standard deviation tells us how spread out the data values are. 
8 We are using the population’s standard deviation, so we can use the standard normal distribution, 
rather than Student’s t distribution. 
9 Equation 5.5 was derived using the same logical process that led to Eq. 5.4. 
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where 

zα/2 z-value corresponding to the chance of making a type I error 
zβ z-value corresponding to the chance of making a type II error 
σ standard deviation in the population 
μA the mean in the population according to the alternative hypothesis 
μ the mean in the population according to the null hypothesis (usually equal to zero). 

As we have seen, the process of estimating the required sample’s size involves specifying 
values for a number of different components of the calculation. This is often the most 
troublesome part of sample’s size estimation and leads to uncertainty about the calculated 
sample’s size because of a lack of confidence in the accuracy of some of the specified 
values. The solution to this uncertainty is to calculate estimates of the required size of 
a planned sample using several different values for the component about which we are 
most uncertain. These calculations are often organized graphically in what is known as a 
power curve. A power curve usually plots the statistical power10 of a planned statistical 
test on the ordinate (Y-axis) and the required size of the sample on the abscissa (X-axis). 
Several lines are plotted on the power curve: each one corresponding to a different value 
of the component of the sample’s size calculation about which we are uncertain. The next 
example shows how a power curve might be used in planning a study. 

Example 5.3 Suppose we are interested studying a new drug designed to lower serum levels 
of low-density lipoprotein (LDL). In this study, we will select sequential patients seen at a 
particular clinic (a convenience sample) who have elevated levels of LDL. These patients 
will be randomly assigned each to receive either the new drug or the standard treatment 
for a 30-day period and, at the end of those 30 days, they will be assigned to receive the 
other treatment for another 30 days. At the end of each period, LDL will be determined. 
Because both treatments are assigned to the same persons, this is a paired study and has 
no independent variable. Imagine that the new treatment would be clinically important if it 
lowers LDL by at least 5 mg/dL. 

Suppose our best guess for the standard deviation of the difference between two LDL 
measurements comes from a pilot study and is 8 mg/dL. Even so, we want to consider other 
guesses (4, 6, 10, and 12 mg/dL) to see how much variation in this guess affects the sample’s 
size. To construct the power curve, we calculate the sample’s sizes corresponding to those 
standard deviations and the z-values representing various probabilities of making a type II 
error using Eq. 5.5. The following power curve displays the results of those calculations.

10 Recall from Chap. 1 that statistical power is the complement of beta, the probability of making a 
type II error. 
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Examination of the power curve shows us that a sample’s size of 30 gives us about 90% 
power with our guess of 8 mg/dL for the standard deviation. That is a reasonable value for 
the power of the planned study. Further examination, however, reveals that the power will 
be about 50% if the standard deviation is as large as 12 mg/dL for a sample of 30 patients. 
On the other hand, we can see that the power will be about 90% if we plan to take a sample 
of about 65 patients even if the standard deviation is as large as 12 mg/dL. Thus, we should 
plan a sample of about 65 patients if we believe that the standard deviation of the data in the 
population could be as large as 12 mg/dL and we want to have a probability of avoiding a 
type II error equal to 0.90. 

5.2 Studies with One Independent Variable 

When we have an independent variable, the method of analysis we use is determined, in 
part, by the type of data represented by the independent variable (see the flowcharts at the 
beginning of Chap. 3). Since the methods used to estimate the size of the sample that is 
required are derived from the methods used to analyze the data, we can expect that those 
methods are different for different types of data represented by the independent variable. 
Let us begin our examination of size estimation by considering a nominal independent 
variable. 

When we have an independent variable that represents nominal data, the nominal inde-
pendent variable separates the dependent variable values into two groups. Those two 
groups might contain the same number of observational units, or they might have differ-
ent numbers of observational units. Thus, when we have a nominal independent variable,
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we have another issue that we need to consider when estimating the required size of 
the sample. That issue is how the total number of observational units in the sample will 
be allocated between the groups. To specify that allocation, we calculate the number 
of observations we will have in one group and represent the number of observations in 
the other group using the sampling ratio. This sampling ratio is equal to the number of 
observational units in group 2 divided by the number of observational units in group 1. 

R = 
n2 

n1 
(5.6)

Equations 5.7 and 5.8 show how this sampling ratio is used in calculation of the 
required sample’s size for a nominal (Eq. 5.7) and continuous dependent variable 
(Eq. 5.8).11 

n1 = 

⎛ 

⎜⎜⎝

(
zα/2 ·

√
θ · (1 − θ)  + θ ·(1−θ)  

R

)
−

(
zβ ·

√
θA1 · (1 − θA1 ) + θA2 ·(1−θA2 ) 

R

)

(θA1 − θA2 ) 

⎞ 

⎟⎟⎠ 

2 

(5.7)

n1 =
(

(zα/2 − zβ ) · σ 
μA1 − μA2

)2 

·
(
1 + 

1 

R

)
(5.8)

For a simple random sample, the sampling ratio should reflect the frequencies of the 
two groups in the population. For a stratified sample, the sampling ratio is chosen by the 
researcher. The most efficient (from a statistical point of view) division of observational 
units among strata is when each stratum contains the same number of observational units. 
A different sampling ratio might be used, however, if it is much more difficult to obtain 
observational units in one group compared to another group. 

Now, let us look at an example of how the sampling ratio affects the required size of 
a sample with a continuous dependent variable and a nominal independent variable. 

Example 5.4 We are planning a study of jaundice associated with two different types 
of liver disease. Suppose that type A liver disease is twice as common as is type B liver 
disease. Further suppose that we suspect that type B disease is associated with a mean indirect 
plasma bilirubin level that is approximately 0.25 mg/dL higher than the mean indirect plasma 
bilirubin level in type A disease. From previous research, we expect the standard deviation 
of indirect plasma bilirubin values in the population to be equal to 0.20 mg/dL. 

We plan to test the null hypothesis that the difference between mean bilirubin levels for 
persons with these two types of liver disease is equal to zero in the population versus the 
alternative hypothesis that the difference is not equal to zero. We will randomly select the 
patients for this study from medical records in 20 clinics that have agreed to participate in

11 Equations 5.7 and 5.8 were derived using the same logical process that led to Eq. 5.4. 
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the study. Since type A disease is twice as common as type B disease, our sampling ratio 
(R) will be 0.5 (two cases of type A for every case of type B). We are willing to take a 5% 
chance of making a type I error and a 5% chance of making a type II error (i.e., a power 
of 95%). We find from Excel that a z-value of -1.645 is associated with a one-tailed beta of 
0.05. Let us estimate how many observational units will be required for each type of disease. 

First, we need to determine the method that will be used to analyze these data once the 
sample has been collected. Since we have a continuous dependent variable and a nominal 
independent variable, we will use the independent sample Student’s t-test for the difference 
between means.12 This tells us that we should use Eq. 5.8 to calculate the required number 
of observational units for patients with type A disease. 

n A =
(

(1.96 + 1.645) · 0.20 
0.25

)
·
(
1 + 

1 

0.5

)
= 24.95 

Thus, we should plan to take a sample containing 25 persons with type A disease. To find 
the required number of persons with type B disease, we rearrange Eq. 5.6. 

nB = n A · R = 24.95 · 0.5 = 12.47 

Thus, the sample should contain 13 persons with type B disease. The total number of 
observational units required in the sample is 25 + 13 = 38 persons.13 

To demonstrate how the unequal division of observational units between the groups is 
less efficient statistically14 than an equal division between the groups, let us calculate the 
number of observational units that would have been required if we planned the sample in 
Example 5.4 with the same number of persons with each type of disease (i.e., a sampling 
ratio of one). 

n A =
(

(1.96 + 1.645) · 0.20 
0.25 − 0

)
·
(
1 + 

1 

1

)
= 16.63 

The number of persons with type A disease required in the sample would be 17. A 
sampling ratio of one indicates that we would also require 17 persons with type B disease. 
Thus, the total number of observational units required would be 17 + 17 = 34, fewer than 
the 38 required if the sampling ratio were 0.5. From a statistical point of view, it would 
be more efficient to have the same number of persons in the sample with each of the two 
types of liver disease. A deviation from a sample ratio of one is justified by the difficulty 
of obtaining observational units in one of the groups.15 

12 We know that by using the flowchart at the beginning of Chap. 3. 
13 25 is 12.47 times two rounded up to the next higher integer. 
14 The greater the degree of statistical efficiency, the smaller the size of the sample that is required 
to achieve a particular level of statistical power. 
15 Another reason for a sampling ratio not equal to one is the desire to take a simple random sample.
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When the independent variable in a sample with one independent variable represents 
continuous rather than nominal data, we do not have a sampling ratio to reflect the number 
of observational units in one group relative to the other group of dependent variable 
values. This does not imply, however, that we do not need to be concerned about the 
distribution of independent variable values in our planned sample. With a continuous 
independent variable, we use the standard deviation of the independent variable rather than 
the sampling ratio to indicate the sample’s distribution of independent variable values in 
calculation of the required size of the sample. If we are planning to take a simple random 
sample, the standard deviation of the data represented by the independent variable that 
we use to estimate the required size of the sample is our guess at the value of that 
standard deviation in the population. In that case, the guess that we use is based on the 
same processes that are used to guess at the value of the standard deviation of the data 
represented by the dependent variable. Namely, guesses at the population’s values of the 
standard deviations of both the outcome and independent variables can be based on values 
reported in the literature or on data collected in a pilot study. 

It is also possible for us to be planning to take a stratified random sample with a 
continuous independent variable. For example, suppose we are interested in looking at 
changes in diastolic blood pressure (dependent variable) associated with various doses 
of an antihypertensive medication (independent variable). To do that, we plan to assign 
(or randomize) a particular number of persons to receive each dose of interest. Since we 
will determine the distribution of independent variable values in the sample, the planned 
sample would be a stratified random sample of the continuous independent variable, dose. 

When a continuous independent variable is sampled as a stratified random sample, 
the standard deviation of the data represented by the independent variable that is used in 
estimation of the required size of the sample should reflect the planned distribution of 
independent variable values. Unlike when we take a simple random sample, the standard 
deviation of continuous data represented by the independent variable is not something for 
which we need to make a guess as part of planning the size of a stratified random sample. 
Rather, we will know the value of this standard deviation once we have decided on how 
we will assign independent variable values. 

In Chap. 3, we learned that there are two analytic approaches we can take when we 
have a continuous dependent variable and a continuous independent variable. These are 
correlation analysis and regression analysis. These two analytic approaches have different 
assumptions and different interpretations. Even so, it does not matter which approach we 
take when estimating the required size of the sample. This is because, as we also learned 
in Chap. 3, testing the null hypothesis that the correlation coefficient is equal to zero 
is the same as testing the omnibus null hypothesis or testing that the slope is equal to 
zero in regression analysis. Interpretation of the correlation coefficient as a reflection of 
the strength of the association between the dependent and independent variables in the 
population is restricted to situations in which we have a simple random sample, but the 
equality of the tests of inference remains the same regardless of how the data represented
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by the independent variable were sampled. Thus, we can use a method based on the 
correlation coefficient to estimate the required size of the sample even if we are planning 
regression analysis of data from a stratified random sample. 

Equation 5.9 shows how we can calculate the number of observational units that would 
be required in a sample based on the correlation coefficient.16 The procedure looks more 
complex than you might have expected. This complexity is due to the fact that correlation 
coefficients from all possible samples of a given size can be assumed to come from a 
Gaussian distribution only if the population’s correlation coefficient is equal to zero. That 
assumption is satisfied in the null distribution but not in the alternative distribution. We 
must transform17 correlation coefficients that are not assumed to be equal to zero. The 
following calculation can be used to estimate the required size of a sample regardless of 
whether we are planning to use correlation analysis or regression analysis.18 

n = 
zα/2 − zβ 

ln
(
1+ρA 
1−ρA

)

2 

2 
+ 3 (5.9)

where 

ln natural logarithm 
ρA the correlation coefficient according to the alternative hypothesis. 

If we are using Eq. 5.9 to estimate the required number of observational units for a regres-
sion analysis, it might be easier for us to specify the slope of the regression line rather 
than the correlation coefficient that we would consider the smallest value to be important 
and, therefore, the smallest we would like to detect (i.e., ρA). The most straightforward 
way to do this is to calculate a correlation coefficient corresponding to the specified slope 
and then, use Eq. 5.9 to calculate the required sample’s size. The relationship between 
the correlation coefficient and the slope is shown in Eq. 5.10. 

ρ = β ·
√

σ 2 x 

σ 2 Y 

(5.10)

where 

ρ the correlation coefficient in the population 
β the slope in the population

16 Equation 5.9 was derived using the same logical process that led to Eq. 5.4. 
17 A transformation is an arithmetical manipulation of data. 
18 Equation 5.9 assumes that the null hypothesis is that the correlation coefficient is equal to zero in 
the population. This is most often true. 
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σ 2 X the variance of independent variable values in the population (square of the standard 
deviation) 

σ 2 Y the variance of dependent variable values in the population (square of the standard 
deviation). 

Now, let us look at an example showing how we can estimate the required size of a 
sample for a data set containing two continuous variables. 

Example 5.5 Suppose we are interested in investigating the relationship between exposure 
to a particular toxic chemical (ppm) and nerve velocity (m/s) that will allow us to estimate 
nerve conduction velocities (dependent variable) associated with specific levels of exposure 
(independent variable). In planning this study, we wish to estimate the size of the sample 
we will require to reject the null hypothesis that the slope of the regression line is equal to 
zero. The alternative hypothesis that we will use in statistical inference is that the slope is 
not equal to zero, but we would like to detect a slope as small as one. We are willing to take 
a 5% chance of making a type I error and a 10% chance of making a type II error (i.e., a 
power of 90%). We plan to take a simple random sample of persons in the population. In 
previous studies of a similar population, the standard deviation of exposure levels was found 
to be equal to two ppm and the standard deviation of nerve conduction velocities was found 
to be equal to four m/s. For what size sample should we plan? 

First, we need to determine what method of analysis we will use to analyze the data in the 
planned sample. Since we are planning to take a simple random sample that will consist of 
a continuous dependent variable (nerve conduction velocity) and a continuous independent 
variable (exposure level), we could use either correlation or regression analysis. Since our 
interest is in estimating dependent variable values corresponding to specific values of the 
independent variable however, our interest is in regression analysis.19 Thus, it is easier for us 
to specify the slope that we would like to detect rather than the correlation coefficient. Since 
calculation of the required size of the planned sample is based on a correlation coefficient, 
we need to calculate the correlation coefficient that would correspond to a slope of one using 
Eq. 5.10. 

ρ = 1 ·
√
22 

42 
= 0.50 

Now, we can use Eq. 5.9 to calculate the required sample’s size. 

n = 
1.96 − (−1.28) 

ln
(
1+0.5 
1−0.5

)

2 

2 

+ 3 = 37.79

19 This is decided using the flowchart at the beginning of Chap. 3. 
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Therefore, we should plan to recruit 38 subjects for this study. Since we are planning to 
take a simple random sample, the distribution of subjects among the independent variable 
values in the sample will be determined by their distribution in the population (and by 
chance) rather than specified by the study’s design. 

5.3 Studies with More Than One Independent Variable 

The methods for estimation of the required size of a sample with more than one inde-
pendent variable that are based on the procedures used to analyze these data are quite 
complex. That complexity is a result of the number of values that must be specified in 
their calculation. In addition to the values supplied for datasets with one independent 
variable, we would need to specify values that mathematically describe all the interre-
lationships among the independent variables if we were to use these methods. This is a 
difficult task and usually cannot be done with much precision. It is seldom worthwhile 
to use these complex calculations if the values we specify for the calculations are poor 
guesses. 

The solution to this problem is to use the sample’s size estimation techniques described 
for datasets with one independent variable even though we plan to use a more complex 
analysis. For example, if we want to estimate the size of a sample in which we will 
compare four groups in an analysis of variance,20 we can plan the number of observa-
tional units to be included in each of those groups to be the same as the number we 
would require in each of two groups if the data were to be analyzed with an independent 
sample Student’s t-test. Then, if we include that number of observations in each of the 
planned four groups, we will have at least as much statistical power in making pairwise 
comparisons between the groups as we would if we only had two groups to compare.21 

20 We learned in Chap. 3 that analysis of variance is a method for comparing three or more means. 
21 We will probably have greater statistical power in the more complex analysis because of the 
greater precision we can expect in estimation of the variance. We expect this greater precision 
because we have more groups of dependent variable values that can be used to calculate the pooled 
estimate of the variance.



Appendix 

Posterior Testing 

When the ANOVA analysis tool is used to analyze a dataset with more than two groups of 
continuous dependent variable values, the omnibus null hypothesis is tested. The omnibus 
null hypothesis in ANOVA is that all the means are equal to the same value in the pop-
ulation. Rejection of that omnibus null hypothesis allows acceptance of the alternative 
hypothesis. The alternative hypothesis is that not all the means are equal to the same 
value in the population. That only tells us that there is at least one difference. It does not 
tell us which means are different from each other. To learn that we need to do a posterior 
test. 

There are several posterior tests that have been proposed. Perhaps the most powerful 
of those is the Student-Newman-Keuls test. To perform the Student-Newman-Keuls test, 
we begin by arranging the means in order of numeric magnitude. Then, we compare the 
means starting with those furthest apart. If we can reject the null hypothesis that those 
means are equal to the same value in the population, we can compare the next most 
extreme means. This continues until we have tested all the pairs of means or we are 
unable to reject a null hypothesis for a pair of means. If we are unable to reject the null 
hypothesis that two means are the same in the population, we also fail to reject the null 
hypothesis for any pairs of means between the two means just compared. 

This protocol for comparing pairs of means will become clearer when we look at an 
example, but first we need to learn how to make those comparisons. To do that, we need to 
calculate a q-value. The following equation shows that calculation for the null hypothesis 
that the difference between two means is equal to zero in the population. 
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q = Y 1 − Y 2√
WMS 
2 ·

(
1 

n1 
+ 1 n2

)

where 

Y 1 mean in Group 1 
Y 2 mean in Group 2 
WMS within mean square from the ANOVA output 
n1 number of observations in Group 1 
n2 number of observations in Group 2. 

Excel cannot help us find a P-value for the q-value. Instead, we need to use the criti-
cal value approach to hypothesis testing. In the critical value approach, we compare the 
absolute value of our calculated q-value to a q-value that corresponds to alpha (the critical 
value). If the absolute value of the calculated statistic is equal to or larger than the critical 
value, we reject the null hypothesis. If the absolute value of the calculated statistic is less 
than the critical value, we fail to reject the null hypothesis. 

Critical values come from a table. A brief table of critical values for q follows. These 
critical values are all for an alpha of 0.05. If you need a more extensive table, consult 
a statistics text that discusses the Student-Newman-Keuls test.1 To use this table, find 
the column that corresponds to the number of means being compared (k). The number 
of means being compared includes the means in the null hypothesis and any means in 
between the two in the null hypothesis. Then, find the row that corresponds to the degrees 
of freedom. The degrees of freedom are the within degrees of freedom from the ANOVA 
output. If the degrees of freedom are not listed, use the next lower degrees of freedom.2 

Where that row and column intersect is the critical value. 
Now, let us look at an example of using the Student-Newman-Keuls test to find 

differences between means following an ANOVA.

1 One such text is: Hirsch RP (2021) Introduction to Biostatistical Applications in Health Research 
with Microsoft Office Excel and R. 2nd Edition. John Wiley & Sons. 
2 Alternatively, you can find the critical value by interpolation. 
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Table A.1 Critical values of the q-statistic from the Student-Newman-Keuls test for an alpha of 0.05 

k 2 3 4 5 6 7 8 9 10 

df 

5 3.635 4.602 5.218 5.673 6.003 6.330 6.582 6.802 6.995 

10 3.151 3.877 4.327 4.654 5.912 5.124 5.305 5.461 5.599 

15 3.014 3.674 4.075 4.367 4.595 4.782 4.940 5.077 5.198 

20 2.950 3.578 3.958 4.232 4.445 4.620 4.768 4.896 5.008 

30 2.888 3.486 3.845 4.102 4.302 4.464 4.602 4.720 4.824 

40 2.858 3.442 3.791 4.039 4.232 4.389 4.521 4.635 4.735 

50 2.844 4.423 3.764 4.008 4.196 4.352 4.481 4.593 4.691 

60 2.829 3.399 3.737 3.977 4.163 4.314 4.441 4.550 4.646 

120 2.800 3.356 3.685 3.917 4.096 4.241 4.363 4.468 4.560 

Example A.1 In Example 3.12, we performed an ANOVA for serum cholesterol levels 
resulting from use of three drugs and a low-fat diet. We got the following output: 

Anova: single factor 

Summary 

Groups Count Sum Average Variance 

Drug A 10 1520 152 565.7777778 

Drug B 10 1600 160 59.11111111 

Drug C 10 1560 156 260.6666667 

Diet 10 1800 180 233.5555556 

Anova 

Source of 
Variation 

SS df MS F P-value F crit  

Between 
Groups 

4640 3 1546.666667 5.528196982 0.003157921 2.866265551 

Within 
Groups 

10,072 36 279.7777778 

Total 14,712 39 

From that output, we know that we can reject the omnibus null hypothesis that all four 
means are equal to the same value in the population because the P-value in the second table 
is less than 0.05. Now, let us use the Student-Newman-Keuls test to determine which means 
are different from each other.
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We begin by listing the means in order of numeric magnitude. The means are in the 
column labeled “Average” in the first table labeled “Summary.” 

Drug A Drug C Drug B Diet 

152 156 160 180 

Next, we test the null hypothesis that the two most extreme means are equal to the same 
value in the population. The two most extreme means are for Drug A and Diet. The within 
mean square is in the second table in the row labeled “Within Groups” and the column 
labeled “MS.” The number of observations in each group are in the first table in the column 
labeled “Count.” 

q = 152 − 180√
279.78 

2 · ( 1 
10 + 1 10

) = −5.294 

We compare that calculated value to the critical value. We can tell there are 36 degrees 
of freedom because of the entry in the second table in the row labeled “Within Groups’ and 
the column labeled “df.” 36 does not appear in Table A.1 so we use the row for the next 
lower value, 30 degrees of freedom. There are four means involved in the comparison. The 
critical value is 3.845. Since the absolute value of -5.2936 is larger than the critical value, 
we reject the null hypothesis that the mean for Drug A is equal to the mean for Diet in the 
population. 

Since Drug A is significantly different from Diet, we can compare the next most extreme 
means. That indicates we can compare Drug C with Diet and Drug A with Drug B. For Drug 
C compared to Diet, the calculated q-value is: 

q = 156 − 180√
279.78 

2 · ( 1 
10 + 1 10

) = −4.537 

For Drug A compared to Drug B, the calculated q-value is: 

q = 152 − 160√
279.78 

2 · ( 1 
10 + 1 10

) = −1.512 

The critical value for those comparisons is the one from Table A.1 that corresponds to 
30 degrees of freedom and k = 3. That value is 3.486. The absolute value of the calculated 
q-statistic for the comparison of Drug C to Diet (−4.537) is larger than the critical value, so 
we can reject the null hypothesis that the mean for Drug C is equal to the mean for Diet in 
the population. The absolute value of the q-statistic for the comparison of Drug A to Drug B 
(−1.512) is less than the critical value. That implies that we fail to reject the null hypothesis 
that the mean for Drug A is equal to the mean for Drug B. It also means we fail to reject 
null hypotheses for all pairs of means between Drug A and Drug B. So, we fail to reject
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the null hypothesis that the mean for Drug A is equal to the mean for Drug C and the null 
hypothesis that the mean for Drug B is equal to the mean for Drug C. 

Since Drug C is significantly different from diet, we can test the null hypothesis that the 
mean for Drug B is equal to the mean for diet. The calculated q-value is: 

q = 156 − 160√
279.78 

2 · ( 1 
10 + 1 10

) = −3.781 

The critical value is the value from the table that corresponds to 30 degrees of freedom 
and k = 2. That critical value is 2.888. Since the absolute calculated value (−3.781) is larger 
than the critical value, we can reject the null hypothesis that the mean for Drug B is equal 
to the mean for diet in the population. 

A convenient way to report the results of Student-Newman-Keuls test is to construct a 
table in which those means that are not significantly different get a common superscript. For 
the serum cholesterol data, that table would be: 

Drug A Drug B Drug C Diet 

152a 160a 156a 180b 

So, mean serum cholesterol is significantly different between persons who were 
assigned to follow the low-fat diet and persons assigned to any of the drugs, but the 
drugs are not significantly different from one another.
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A 
Alpha 

adjusted, 9, 58 
compared to P-value, 3 
definition, 3 

Alternative hypothesis 
defintion, 2 

Analysis of variance, 40 
ANOVA, 40 
Armitage’s method, 57 

B 
Bayes’ Theorem, 7 
Beta 

definition, 3 
Bias, 13, 14, 19 
Bonferroni correction, 9 

C 
Case-control study, 16 
Clinical trial, 55 
Close-ended methods, 56 
Cluster sampling, 18 
Conditional power, 60 
Conditional probabilities, 6 
Continuous data, 24 
Continuous variable, 24 
Convenience sampling, 19 
Correlation coefficient, 36 

D 
Dependent variable, 24 
Deterministic curtailment, 59 
Direct association, 36 
Dummy variable, 50 

E 
Elemental sample, 12 
Elements 

in the population, 12 
Experiment-wise type I error rate, 8 

F 
Factorial ANOVA, 41 
Factors, 41 
Framingham Heart Study, 20 

G 
Group sequential analysis, 58 

I 
Independent sample t-test, 28 
Independent sample z-test, 47 
Independent variable, 24 
Indicator variable, 50 
Intercept, 32 
Interim analysis, 55 
Intervention studies, 17 
Inverse association, 36 
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J 
Judgment sampling, 14 

L 
Listing units, 13 

M 
Minimum detectable value, 68 
Model sampling, 14 
Multiple comparison problem, 8, 55 
Multiple regression analysis, 42 
Multistage sampling, 20 

N 
Naturalistic sample, 37 
Nominal data, 24 
Nominal variables, 24 
Null distribution 

definition, 4 
Null hypothesis 

definition, 2 
failing to reject, 2 

O 
Observational units, 13 
Omnibus null hypothesis, 34, 40, 79 
One-tailed 

definition, 3 
One-way ANOVA, 41 
Open-ended methods, 56 

P 
Paired t-test, 26 
Paired z-test, 46 
Paired z-value, 66 
Posterior probability 

definition, 6 
Posterior test, 42, 79 
Power curve, 71 
Preference study, 46 
Prior probability 

definition, 6 
Probability sampling, 15 
Purposive sample, 37 

P-value 
calculation, 4 
definition, 2 
in Excel, 29 
interpretation, 4 
rejection criterion, 2 

Q 
Quota sampling, 14 
Q-value, 79 

R 
Random number, 15 
Regression analysis, 31 
Regression coefficients, 45 
Regression equation, 45, 49 

S 
Sample’s size, 66 
Sampled population, 12 
Sampling distribution 

definition, 4 
Sampling frame, 13 
Sampling ratio, 73 
Sampling units, 12 
Scatter plot, 32 
Sequential analysis, 56 
Simple random sampling, 15 
Slope, 32 
Statistical efficiency, 74 
Statistically independent, 18 
Statistically significant 

definition, 4 
Statistical power 

defintion, 3 
Stochastic curtailment, 59 
Stratified random sampling, 16 
Student-Newman-Keuls test, 79 
Systematic sampling, 19 

T 
Test for trend, 49 
Test-wise type I error rate, 8 
Two-tailed 

definition, 2
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2x2 table, 48 

Type I error, 66 

definition, 3 

Type II error, 68 

definition, 3 

W 
Wald’s method, 57


	Preface
	Notices
	Contents
	1 Logic of Hypothesis Testing
	1.1 Classical (Frequentist) Approach
	1.1.1 Statistical Hypotheses and Conclusions
	1.1.2 Errors in Hypothesis Testing
	1.1.3 Calculating P-Values
	1.1.4 Interpreting P-Values

	1.2 Bayesian Approach
	1.2.1 Bayes’ Theorem
	1.2.2 Multiple Hypotheses


	2 Sampling
	2.1 Taking Samples
	2.2 Model Sampling
	2.3 Probability Sampling
	2.4 Other Methods of Sampling

	3 Basic Statistical Methods
	3.1 Selecting a Test
	3.2 Student’s t-Tests
	3.2.1 Paired t-Test
	3.2.2 Independent Sample t-Test

	3.3 Regression Analysis
	3.4 Correlation Analysis
	3.5 Analysis of Variance
	3.6 Multiple Regression Analysis
	3.7 Z-Tests for Nominal Data
	3.7.1 Paired z-Test
	3.7.2 Independent Sample z-Test
	3.7.3 Test for Trend


	4 Interim Analysis
	4.1 The Problem
	4.2 Sequential Analysis
	4.3 Stochastic Curtailment

	5 Planning the Sample’s Size
	5.1 Studies with No Independent Variable
	5.2 Studies with One Independent Variable
	5.3 Studies with More Than One Independent Variable

	 Appendix
	Posterior Testing

	Index

